Quotes & Sayings


We, and creation itself, actualize the possibilities of the God who sustains the world, towards becoming in the world in a fuller, more deeper way. - R.E. Slater

There is urgency in coming to see the world as a web of interrelated processes of which we are integral parts, so that all of our choices and actions have [consequential effects upon] the world around us. - Process Metaphysician Alfred North Whitehead

Kurt Gödel's Incompleteness Theorem says (i) all closed systems are unprovable within themselves and, that (ii) all open systems are rightly understood as incomplete. - R.E. Slater

The most true thing about you is what God has said to you in Christ, "You are My Beloved." - Tripp Fuller

The God among us is the God who refuses to be God without us, so great is God's Love. - Tripp Fuller

According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for this world to recreate, reclaim, redeem, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater

Our eschatological ethos is to love. To stand with those who are oppressed. To stand against those who are oppressing. It is that simple. Love is our only calling and Christian Hope. - R.E. Slater

Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger

Exploring the edge of life and faith in a post-everything world. - Todd Littleton

I don't need another reason to believe, your love is all around for me to see. – Anon

Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII

Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut

Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest

We become who we are by what we believe and can justify. - R.E. Slater

People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. – Anon

Certainly, God's love has made fools of us all. - R.E. Slater

An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater

Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann

Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument. There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is irreducibly subject and never made as an object, a force, a power, or a principle that can be manipulated. - Emil Brunner

“Ehyeh Asher Ehyeh” means "I will be that who I have yet to become." - God (Ex 3.14) or, conversely, “I AM who I AM Becoming.”

Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton

The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table to share life with one another as a new kind of family. When this happens, we show to the world what love, justice, peace, reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. – Anon

The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul

The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah

If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer

God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power is made perfect in weakness; and His grace is sufficient for all. – Anon

Our little [biblical] systems have their day; they have their day and cease to be. They are but broken lights of Thee, and Thou, O God art more than they. - Alfred Lord Tennyson

We can’t control God; God is uncontrollable. God can’t control us; God’s love is uncontrolling! - Thomas Jay Oord

Life in perspective but always in process... as we are relational beings in process to one another, so life events are in process in relation to each event... as God is to Self, is to world, is to us... like Father, like sons and daughters, like events... life in process yet always in perspective. - R.E. Slater

To promote societal transition to sustainable ways of living and a global society founded on a shared ethical framework which includes respect and care for the community of life, ecological integrity, universal human rights, respect for diversity, economic justice, democracy, and a culture of peace. - The Earth Charter Mission Statement

Christian humanism is the belief that human freedom, individual conscience, and unencumbered rational inquiry are compatible with the practice of Christianity or even intrinsic in its doctrine. It represents a philosophical union of Christian faith and classical humanist principles. - Scott Postma

It is never wise to have a self-appointed religious institution determine a nation's moral code. The opportunities for moral compromise and failure are high; the moral codes and creeds assuredly racist, discriminatory, or subjectively and religiously defined; and the pronouncement of inhumanitarian political objectives quite predictable. - R.E. Slater

God's love must both center and define the Christian faith and all religious or human faiths seeking human and ecological balance in worlds of subtraction, harm, tragedy, and evil. - R.E. Slater

In Whitehead’s process ontology, we can think of the experiential ground of reality as an eternal pulse whereby what is objectively public in one moment becomes subjectively prehended in the next, and whereby the subject that emerges from its feelings then perishes into public expression as an object (or “superject”) aiming for novelty. There is a rhythm of Being between object and subject, not an ontological division. This rhythm powers the creative growth of the universe from one occasion of experience to the next. This is the Whiteheadian mantra: “The many become one and are increased by one.” - Matthew Segall

Without Love there is no Truth. And True Truth is always Loving. There is no dichotomy between these terms but only seamless integration. This is the premier centering focus of a Processual Theology of Love. - R.E. Slater

-----

Note: Generally I do not respond to commentary. I may read the comments but wish to reserve my time to write (or write from the comments I read). Instead, I'd like to see our community help one another and in the helping encourage and exhort each of us towards Christian love in Christ Jesus our Lord and Savior. - re slater

Friday, April 15, 2022

Process-based Organic Consciousness, Sentience, and some Easter Thoughts





A PROCESS STATEMENT

The universe is a very organic thing. Which is another way of saying that all things in an organic universe are related to one another. Part of being organic is that when all things are related to one another it also means that all things processually proceed with one another in casual affectiveness. It is the kind of processual relationality which a unique, one-of-a-kind cosmology contains within itself which is determinative of the kinds of cosmological outcomes which may proceed from this ontological form of metaphysical economy held within a singularly unique multiverse. In processual philosophical terms this economy is described as holding within itself prehensive possibilities which are affected by other prehensive possibilities, each-and-all conjoining together towards possible processual actualities which when actualized then concresce towards other prehensive possibilities and outcomes. In sum, that which "is" is in the process of "being and becoming."

A PROCESS AXIOM

Succinctly, in a processual cosmology it is correct to say, when reflecting on a relational cosmology, that a state of "being" is always in a state of "becoming. "To Be" is "to Become." If not, then being ceases to exist. In a processually relational universe nothing can cease to exist as transformative becoming can never cease to occur. Not only is change constant, neither can it happen alone. Nothing is ever alone. Nothing can be reduced to its elemental stage. And if it were, is meaningless without an affectation for relationality. Reductionary mechanism without elucidation of the processes surrounding processual event is simply meaningless existence. In fact, one may argue that a nonrelational elemental is nonexistent unless it has at least one external relationship affected by itself, and itself affecting another relationship. This would be the summa cum laude of "beingness". There can be no "beingness" if there isn't any relational affectiveness causing processual "becomingness". This is why evolution thrives. Because all things are in a non-determinative, openly affecting relationship with each other creating a difference of possible outcomes. Whether as a form of cosmic evolution, or as a form of biologic evolution, "life" is always a description of relational processes affecting one another towards an indeterminate, open future.

A PROCESS THEOLOGY

In like manner, a process-based faith of any kind, of any religion - especially  that of Christianity along with its fellow cosmic parallels of Hinduism et al - is only connective to the natural cosmology around us should it acknowledge and lean into this kind of metaphysical / ontological cosmological structure. It's what enlivens aesthetics and gives energy towards moral ethics when observing how man and nature interactively commune together in good, or bad, mutually nurturing (or unnurturing) relationships with one another. Each seeking its own wellbeing which may, or may not, adversely affect the other, dependent upon the balance we each give to the other's ontological rhythms and reasons and motions.

More precisely, for Christianity, it is also why the Christian faith should be circumscribed around God's love and not cast into man's versions of his own being by ascribing to God man's own wrath and anger. If God is love, then God is love through and through. No hell. No punishment. No judgment. These outcomes all result through man not loving "one another" in affective, nurturing relationships of wellbeing. So too with nature when we divorce ourselves from nature's rhythms and affectuating beingness (I prefer using here affectuating over effectuating, even though it is a non-word).

Thus and thus, God is love. God is relational. God is processual. God has created from God's Self - from the divine Imago Dei - a creation after God's own Being and Beingness. A creation which is relationally present (hence process theology leans into divine immanence over divine transcendence, though the latter is not denied). That is processual in relational event; non-determinative by God and yet, paradoxically, fully informed by God; which is open in its future without divine constraints or boundaries and yet, fully sustained and moved by God throughout its entirety; one which is immanently bound up in God and God's own presence through and through creation's own metaphysical being and becomingness. Even as creation evolves so too does God evolve with creation's newness corresponding with its processual developmnt and results while energizing its processual evolution having never escaped from God's Imago Dei. This divinely propelled evolution is always filled with, and striving teleologically for, goodness and wellbeing, though this may mean something quite different for a wolf eyeing its prey, or a bacteria growing its own colony. God is neither controlling creation nor is God determining creations' outcomes. However, the blueprint of the Divine is the DNA within all of creation's expanses. God formed it from its formless void (creatio continua, not creation ex nihilo) and gave to it life and direction and sustenance. This is process theology. It is a theology of fellowship, communion, and commonality.

SEVERAL DERIVATIVE PROCESS OBSERVATIONS

Being curious about everything explains drive, ambition, even imagination. Without curiosity speculation would be stymied. Lately, process philosophy has been showing itself most applicable to today's contemporary sciences and metaphysical conjectures. As part of the next generation of process thinkers, a fourth generation of process academicians are exploring many, many more applicable streams of process thought throughout the sciences like today's brief discussion of holographic consciousness elucidated below. As the process sciences continue to develop ala Alfred North Whitehead's initial philosophical proposals in the early 1900s it seems that there aren't any socio-scientific-ecological areas out there which cannot be examined - or helped - by process thinking. Unless it is our taxes, since today is tax day when all tax payments are due!

One last thought... as today is also Good Friday where Jesus' death on the cross repaid-and-repaired all of creation's fallenness measured by it's many broken relationships with-and-within itself. And on Easter, two days hence from today, Jesus arose from the grave in resurrection power and redemption for all. Let us then note as consequence the beauty of Jesus' processual / relational salvific force come to heal and rectify all broken things measured in sin and evil, suffering and harm. Not only spiritually, but also personally, relationally, and perhaps even physically. By Jesus' re-engagement of God's love into this broken world, and by His redemption, Jesus provides salvific hope and renewal, transformative reformation and conforming presence, to all things unloving, ungood, and un-natural.

As God is love this means there is also no divine (or Christian) hell... but there is hell on earth in a wayward, self-filled creation. A hell which may be dis-spelled through Jesus' healing redemption. It begins with God's ever constant love which never abandons, never forsakes, nor ceases to be present in our lives through all our troubles, defeats, and ruins. God is always in immanent relationship with us, His creation. And in Jesus this love is healed that healing in this life may begin again within us to those broken around us.

WE LIVE IN A HOLOGRAPHIC UNIVERSE

One last observation... there is a kind of cosmic awareness, or consciousness, pervading throughout the universe. We might measure it by its forces and energies, its time and events, but as a cosmic organism process theology grants to it its own panpsychic awareness bourne out by its integrated relationality measured by affectuating processes. Without straying into New Ageism or Aural Astrology, we might better describe this subsidiary relational affect in terms  of a cosmic holographic awareness of itself. Into this category one might throw in the ideas of time, substance, and consciousness. None of these are concrete things but byproducts of events in motion. Not illusions but more like holographic afteraffects of processual events in dynamic relationships with one another.

Moreover, humanity is not unique in its awareness of itself. From animals to ants, from trees to bacteria, from quantum forces and quarks, within each rests an "awareness" bound within all things of its environment. Which, taken together, grants forms of panpsychic consciousness whether on a cosmic or planetary scale, or within biologic evolution itself. Humanity is neither alone nor unique in its most prized idea of itself... its consciousness. Man inherited this trait or quality of consciousness ftom the earth, from the stars, fyom God's own Self. 

A PROCESS WORLD MEANS PROCESSUAL HEALING

Lastly, there may be a kind of processual healing spiritually ascribed onto all relationally prehending occasions portending future determinative actualities which may, perhaps, proceed differently than they might have actually proceeded without affectuating interference. This is the power of prayer and of enlisting the Author of creation to heal and renew His wayward creation to loving action - whether man or beast, cosmic force or biologic energy. We are to live in harmony and in balance with one another. Jesus is the spirituality which brings all of God's Being back together with all the world's becoming which has broken fellowship and presence with God. It is the story of Easter and its meaning for all....

Peace, and Good Easter,

R.E. Slater
April 15, 2022





The Holographic Brain
May 21, 2021


The Mystery
Holonomic brain theory, also known as 'The Holographic Brain', is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. This is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry, and which assumes that any quantum effects will not be significant at this scale. The entire field of quantum consciousness is often criticized as pseudoscience. This specific theory of quantum consciousness was developed by neuroscientist Karl Pribram initially in collaboration with physicist David Bohm building on the initial theories of holograms originally formulated by Dennis Gabor. It describes human cognition by modeling the brain as a holographic storage network. Pribram suggests these processes involve electric oscillations in the brain's fine-fibered dendritic webs, which are different from the more commonly known action potentials involving axons and synapses. These oscillations are waves and create wave interference patterns in which memory is encoded naturally, and the wave function may be analyzed by a Fourier transform. Gabor, Pribram and others noted the similarities between these brain processes and the storage of information in a hologram, which can also be analyzed with a Fourier transform. In a hologram, any part of the hologram with sufficient size contains the whole of the stored information. In this theory, a piece of a long-term memory is similarly distributed over a dendritic arbor so that each part of the dendritic network contains all the information stored over the entire network. This model allows for important aspects of human consciousness, including the fast associative memory that allows for connections between different pieces of stored information and the non-locality of memory storage (a specific memory is not stored in a specific location, i.e. a certain cluster of neurons).



  

  

Processual Readings in Process Thought








HOLONOMIC BRAIN THEORY


Holonomic brain theory, also known as The Holographic Brain, is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. This is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry, and which assumes that any quantum effects will not be significant at this scale. The entire field of quantum consciousness is often criticized as pseudoscience.

This specific theory of quantum consciousness was developed by neuroscientist Karl Pribram initially in collaboration with physicist David Bohm building on the initial theories of holograms originally formulated by Dennis Gabor. It describes human cognition by modeling the brain as a holographic storage network.[1][2] Pribram suggests these processes involve electric oscillations in the brain's fine-fibered dendritic webs, which are different from the more commonly known action potentials involving axons and synapses.[3][4][5] These oscillations are waves and create wave interference patterns in which memory is encoded naturally, and the wave function may be analyzed by a Fourier transform.[3][4][5][6][7] Gabor, Pribram and others noted the similarities between these brain processes and the storage of information in a hologram, which can also be analyzed with a Fourier transform.[1][8] In a hologram, any part of the hologram with sufficient size contains the whole of the stored information. In this theory, a piece of a long-term memory is similarly distributed over a dendritic arbor so that each part of the dendritic network contains all the information stored over the entire network.[1][8][9] This model allows for important aspects of human consciousness, including the fast associative memory that allows for connections between different pieces of stored information and the non-locality of memory storage (a specific memory is not stored in a specific location, i.e. a certain cluster of neurons).[1][10][11]

Origins and development

In 1946 Dennis Gabor invented the hologram mathematically, describing a system where an image can be reconstructed through information that is stored throughout the hologram.[3] He demonstrated that the information pattern of a three-dimensional object can be encoded in a beam of light, which is more-or-less two-dimensional. Gabor also developed a mathematical model for demonstrating a holographic associative memory.[12] One of Gabor's colleagues, Pieter Jacobus Van Heerden, also developed a related holographic mathematical memory model in 1963.[13][14][15] This model contained the key aspect of non-locality, which became important years later when, in 1967, experiments by both Braitenberg and Kirschfield showed that exact localization of memory in the brain was false.[9]

Karl Pribram had worked with psychologist Karl Lashley on Lashley's engram experiments, which used lesions to determine the exact location of specific memories in primate brains.[1] Lashley made small lesions in the brains and found that these had little effect on memory. On the other hand, Pribram removed large areas of cortex, leading to multiple serious deficits in memory and cognitive function. Memories were not stored in a single neuron or exact location, but were spread over the entirety of a neural network. Lashley suggested that brain interference patterns could play a role in perception, but was unsure how such patterns might be generated in the brain or how they would lead to brain function.[16]

Several years later an article by neurophysiologist John Eccles described how a wave could be generated at the branching ends of pre-synaptic axons. Multiple of these waves could create interference patterns. Soon after, Emmett Leith was successful in storing visual images through the interference patterns of laser beams, inspired by Gabor's previous use of Fourier transformations to store information within a hologram.[17] After studying the work of Eccles and that of Leith,[16] Pribram put forward the hypothesis that memory might take the form of interference patterns that resemble laser-produced holograms.[18] Physicist David Bohm presented his ideas of holomovement and implicate and explicate order.[citation needed] Pribram became aware of Bohm's work in 1975[19] and realized that, since a hologram could store information within patterns of interference and then recreate that information when activated, it could serve as a strong metaphor for brain function.[16] Pribram was further encouraged in this line of speculation by the fact that neurophysiologists Russell and Karen DeValois[20] together established "the spatial frequency encoding displayed by cells of the visual cortex was best described as a Fourier transform of the input pattern."[21]

Theory overview

The hologram and holonomy

Diagram of one possible hologram setup.

A main characteristic of a hologram is that every part of the stored information is distributed over the entire hologram.[2] Both processes of storage and retrieval are carried out in a way described by Fourier transformation equations.[22] As long as a part of the hologram is large enough to contain the interference pattern, that part can recreate the entirety of the stored image, but the image may have unwanted changes, called noise.[8]

An analogy to this is the broadcasting region of a radio antenna. In each smaller individual location within the entire area it is possible to access every channel, similar to how the entirety of the information of a hologram is contained within a part.[3] Another analogy of a hologram is the way sunlight illuminates objects in the visual field of an observer. It doesn't matter how narrow the beam of sunlight is. The beam always contains all the information of the object, and when conjugated by a lens of a camera or the eyeball, produces the same full three-dimensional image. The Fourier transform formula converts spatial forms to spatial wave frequencies and vice versa, as all objects are in essence vibratory structures. Different types of lenses, acting similarly to optic lenses, can alter the frequency nature of information that is transferred.

This non-locality of information storage within the hologram is crucial, because even if most parts are damaged, the entirety will be contained within even a single remaining part of sufficient size. Pribram and others noted the similarities between an optical hologram and memory storage in the human brain. According to the holonomic brain theory, memories are stored within certain general regions, but stored non-locally within those regions.[23] This allows the brain to maintain function and memory even when it is damaged.[2][22][24] It is only when there exist no parts big enough to contain the whole that the memory is lost.[3] This can also explain why some children retain normal intelligence when large portions of their brain—in some cases, half—are removed. It can also explain why memory is not lost when the brain is sliced in different cross-sections.[5]

A single hologram can store 3D information in a 2D way. Such properties may explain some of the brain's abilities, including the ability to recognize objects at different angles and sizes than in the original stored memory.

Pribram proposed that neural holograms were formed by the diffraction patterns of oscillating electric waves within the cortex.[24] Representation occurs as a dynamical transformation in a distributed network of dendritic microprocesses.[25] It is important to note the difference between the idea of a holonomic brain and a holographic one. Pribram does not suggest that the brain functions as a single hologram. Rather, the waves within smaller neural networks create localized holograms within the larger workings of the brain.[5] This patch holography is called holonomy or windowed Fourier transformations.

A holographic model can also account for other features of memory that more traditional models cannot. The Hopfield memory model has an early memory saturation point before which memory retrieval drastically slows and becomes unreliable.[22] On the other hand, holographic memory models have much larger theoretical storage capacities. Holographic models can also demonstrate associative memory, store complex connections between different concepts, and resemble forgetting through "lossy storage".[12]

The synaptodendritic web

A Few of the Various Types of Synapses

In classic brain theory the summation of electrical inputs to the dendrites and soma (cell body) of a neuron either inhibit the neuron or excite it and set off an action potential down the axon to where it synapses with the next neuron. However, this fails to account for different varieties of synapses beyond the traditional axodendritic (axon to dendrite). There is evidence for the existence of other kinds of synapses, including serial synapses and those between dendrites and soma and between different dendrites.[4] Many synaptic locations are functionally bipolar, meaning they can both send and receive impulses from each neuron, distributing input and output over the entire group of dendrites.[4]

Processes in this dendritic arbor, the network of teledendrons and dendrites, occur due to the oscillations of polarizations in the membrane of the fine-fibered dendrites, not due to the propagated nerve impulses associated with action potentials.[3] Pribram posits that the length of the delay of an input signal in the dendritic arbor before it travels down the axon is related to mental awareness.[4][26] The shorter the delay the more unconscious the action, while a longer delay indicates a longer period of awareness. A study by David Alkon showed that after unconscious Pavlovian conditioning there was a proportionally greater reduction in the volume of the dendritic arbor, akin to synaptic elimination when experience increases the automaticity of an action.[4] Pribram and others theorize that, while unconscious behavior is mediated by impulses through nerve circuits, conscious behavior arises from microprocesses in the dendritic arbor.[3]

At the same time, the dendritic network is extremely complex, able to receive 100,000 to 200,000 inputs in a single tree, due to the large amount of branching and the many dendritic spines protruding from the branches.[4] Furthermore, synaptic hyperpolarization and depolarization remains somewhat isolated due to the resistance from the narrow dendritic spine stalk, allowing a polarization to spread without much interruption to the other spines. This spread is further aided intracellularly by the microtubules and extracellularly by glial cells. These polarizations act as waves in the synaptodendritic network, and the existence of multiple waves at once gives rise to interference patterns.[4]

Deep and surface structure of memory

Pribram suggests that there are two layers of cortical processing: a surface structure of separated and localized neural circuits and a deep structure of the dendritic arborization that binds the surface structure together. The deep structure contains distributed memory, while the surface structure acts as the retrieval mechanism.[3] Binding occurs through the temporal synchronization of the oscillating polarizations in the synaptodendritic web. It had been thought that binding only occurred when there was no phase lead or lag present, but a study by Saul and Humphrey found that cells in the lateral geniculate nucleus do in fact produce these.[4] Here phase lead and lag act to enhance sensory discrimination, acting as a frame to capture important features.[4] These filters are also similar to the lenses necessary for holographic functioning.

Pribram notes that holographic memories show large capacities, parallel processing and content addressability for rapid recognition, associative storage for perceptual completion and for associative recall.[27] In systems endowed with memory storage, these interactions therefore lead to progressively more self-determination.[25]

Recent studies

While Pribram originally developed the holonomic brain theory as an analogy for certain brain processes, several papers (including some more recent ones by Pribram himself) have proposed that the similarity between hologram and certain brain functions is more than just metaphorical, but actually structural.[10][26] Others still maintain that the relationship is only analogical.[28] Several studies have shown that the same series of operations used in holographic memory models are performed in certain processes concerning temporal memory and optomotor responses. This indicates at least the possibility of the existence of neurological structures with certain holonomic properties.[9] Other studies have demonstrated the possibility that biophoton emission (biological electrical signals that are converted to weak electromagnetic waves in the visible range) may be a necessary condition for the electric activity in the brain to store holographic images.[10] These may play a role in cell communication and certain brain processes including sleep, but further studies are needed to strengthen current ones.[26] Other studies have shown the correlation between more advanced cognitive function and homeothermy. Taking holographic brain models into account, this temperature regulation would reduce distortion of the signal waves, an important condition for holographic systems.[10] Computation approach in terms of holographic codes and processing.[29]

Criticism and alternative models

Pribram's holonomic model of brain function did not receive widespread attention at the time, but other quantum models have been developed since, including brain dynamics by Jibu & Yasue and Vitiello's dissipative quantum brain dynamics. Though not directly related to the holonomic model, they continue to move beyond approaches based solely in classic brain theory.[2][10]

Correlograph

In 1969 scientists D. Wilshaw, O. P. Buneman and H. Longuet-Higgins proposed an alternative, non-holographic model that fulfilled many of the same requirements as Gabor's original holographic model. The Gabor model did not explain how the brain could use Fourier analysis on incoming signals or how it would deal with the low signal-noise ratio in reconstructed memories. Longuet-Higgin's correlograph model built on the idea that any system could perform the same functions as a Fourier holograph if it could correlate pairs of patterns. It uses minute pinholes that do not produce diffraction patterns to create a similar reconstruction as that in Fourier holography.[2] Like a hologram, a discrete correlograph can recognize displaced patterns and store information in a parallel and non-local way so it usually will not be destroyed by localized damage.[30] They then expanded the model beyond the correlograph to an associative net where the points become parallel lines arranged in a grid. Horizontal lines represent axons of input neurons while vertical lines represent output neurons. Each intersection represents a modifiable synapse. Though this cannot recognize displaced patterns, it has a greater potential storage capacity. This was not necessarily meant to show how the brain is organized, but instead to show the possibility of improving on Gabor's original model.[30] P. Van Heerden countered this model by demonstrating mathematically that the signal-noise ratio of a hologram could reach 50% of ideal. He also used a model with a 2D neural hologram network for fast searching imposed upon a 3D network for large storage capacity. A key quality of this model was its flexibility to change the orientation and fix distortions of stored information, which is important for our ability to recognize an object as the same entity from different angles and positions, something the correlograph and association network models lack.[15]

See also

References

  1. Jump up to:a b c d e Forsdyke D. R. (2009). "Samuel Butler and human long term memory: Is the cupboard bare?". Journal of Theoretical Biology258 (1): 156–164. doi:10.1016/j.jtbi.2009.01.028PMID 19490862.
  2. Jump up to:a b c d e Andrew A. M. (1997). "The decade of the brain - further thoughts". Kybernetes26 (3): 255–264. doi:10.1108/03684929710163155.
  3. Jump up to:a b c d e f g h Pribram K. H., Meade S. D. (1999). "Conscious awareness: Processing in the synaptodendritic web". New Ideas in Psychology17 (3): 205–214. doi:10.1016/S0732-118X(99)00024-0.
  4. Jump up to:a b c d e f g h i j Pribram K. H. (1999). "Quantum holography: Is it relevant to brain function?". Information Sciences115 (1–4): 97–102. doi:10.1016/S0020-0255(98)10082-8.
  5. Jump up to:a b c Vandervert L. R. (1995). "Chaos theory and the evolution of consciousness and mind: A thermodynamic-holographic resolution to the mind-body problem". New Ideas in Psychology13 (2): 107–127. doi:10.1016/0732-118X(94)00047-7.
  6. ^ Berger D.H., Pribram K.H. (1992). "The Relationship between the Gabor elementary function and a stochastic model of the inter-spike interval distribution in the responses of the visual cortex neurons". Biological Cybernetics67 (2): 191–194. doi:10.1007/bf00201026PMID 1320946S2CID 11123748.
  7. ^ Pribram K.H. (2004). "Consciousness Reassessed". Mind and Matter2: 7–35.
  8. Jump up to:a b c Gabor D (1972). "Holography, 1948–1971". Science177 (4046): 299–313. doi:10.1126/science.177.4046.299PMID 4556285.
  9. Jump up to:a b c Borsellino A., Poggio T. (1972). "Holographic aspects of temporal memory and optomotor responses". Kybernetik10 (1): 58–60. doi:10.1007/bf00288785PMID 4338085S2CID 10084612.
  10. Jump up to:a b c d e Bókkon István (2005). "Dreams and neuroholography: An interdisciplinary interpretation of development of homeotherm state in evolution". Sleep and Hypnosis7 (2): 47–62.
  11. ^ Gabor D (1968). "Holographic Model of Temporal Recall". Nature217 (5128): 584. doi:10.1038/217584a0PMID 5641120S2CID 4147927.
  12. Jump up to:a b Kelly M. A.; Blostein D.; Mewhort D. J. K. (2013). "Encoding structure in holographic reduced representations"Canadian Journal of Experimental Psychology67 (2): 79–93. doi:10.1037/a0030301PMID 23205508.
  13. ^ Van Heerden P. J. (1963). "A New Optical Method of Storing and Retrieving Information". Applied Optics2 (4): 387–392. doi:10.1364/AO.2.000387.
  14. ^ Van Heerden P. J. (1963). "Theory of Optical Information Storage in Solids". Applied Optics2 (4): 393–400. doi:10.1364/AO.2.000393.
  15. Jump up to:a b Van Heerden P. J. (1970). "Models for the brain". Nature225 (5228): 177–178. doi:10.1038/225177a0PMID 5409963S2CID 4224802.
  16. Jump up to:a b c Pribram H.H. (2011). "Recollections". NeuroQuantology9 (3): 370–374. doi:10.14704/nq.2011.9.3.447.
  17. ^ Emmett N. Leith and Juris Upatnieks (1965). Photography by Laser. Scientific American Volume 212, Issue 6, June 1, 1965
  18. ^ K. Pribram (1969). The Neurophysiology of Remembering. American Volume 220, Issue 1, January 1, 1969
  19. ^ The implicate brain by Karl H. Pribram, karlhpribram.com
  20. ^ DeValois and DeValois, 1980
  21. ^ "Pribram, 1987"
  22. Jump up to:a b c Srivastava V., Edwards S. F. (2004). "A mathematical model of capacious and efficient memory that survives trauma". Physica A: Statistical Mechanics and Its Applications333 (1–4): 465–477. doi:10.1016/j.physa.2003.10.008.
  23. ^ Longuet-Higgins H. C. (1968). "Holographic model of temporal recall [50]"Nature217 (5123): 104. doi:10.1038/217104a0PMID 5635629S2CID 4281144.
  24. Jump up to:a b Baev K.V. (2012). "Solution of the Problem of Central Pattern Generators and a New Concept of Brain Functions". Neurophysiology4 (5): 414–432. doi:10.1007/s11062-012-9313-xS2CID 17264908.
  25. Jump up to:a b Pribram, Karl (1991). Brain and Perception: Holonomy and Structure in Figural Processing. Laurence Erlbaum Associates, Inc. ISBN 0-89859-995-4.
  26. Jump up to:a b c Persinger M.A., Lavallee C. (2012). "The Σn=n Concept and the Quantitative Support for the Cerebral-Holographic and Electromagnetic Configuration of Consciousness". Journal of Consciousness Studies19: 128–253.
  27. ^ Unterseher, Fred (1996). Holography Handbook: Making Holograms The Easy Way (Second ed.). Ross Books. pp. 354–359. ISBN 0-89496-016-4.
  28. ^ Velmans M (2003). "Is the world in the brain, or the brain in the world?". Behavioral and Brain Sciences26 (4): 427–429. doi:10.1017/s0140525x03420098.
  29. ^ Shlomi Dolev; Ariel, Hanemann (2014). "Holographic "Brain" Memory and Computation"Latin America Optics and Photonics: 16–21. doi:10.1364/LAOP.2014.LM2A.3.
  30. Jump up to:a b Willshaw D. J.; Buneman O. P.; Longuet-Higgins H. C. (1969). "Non-holographic associative memory". Nature222 (5197): 960–962. doi:10.1038/222960a0PMID 5789326S2CID 27768997.

Bibliography

  1. Steven Platek et al., “Boldly going where no brain has gone: Futures of evolutionary cognitive neuroscience,” Futures, October 2011, Volume 43, Issue 8, 771–776.
  2. Diedrick Aerts et al., Quantum Interaction Approach in Cognition, Artificial Intelligence, and Robots, Brussels University Press, April 2011.
  3. Ervin Laszlo, “In Defense of Intuition: Exploring the Physical Foundations of Spontaneous Apprehension,” Journal of Scientific Exploration, 2009, Volume 23[unreliable source?]
  4. Karl Pribram, Brain and Perception: Holonomy and Structure in Figural Processing (Lawrence Erlbaum Associates, 1991), 125–150.
  5. Karl Pribram, The Form Within (Prospecta Press, 2013).
  6. Michael Talbot, The Holographic Universe (HarperCollins, 2011).

External links



No comments:

Post a Comment