Quotes & Sayings


We, and creation itself, actualize the possibilities of the God who sustains the world, towards becoming in the world in a fuller, more deeper way. - R.E. Slater

There is urgency in coming to see the world as a web of interrelated processes of which we are integral parts, so that all of our choices and actions have [consequential effects upon] the world around us. - Process Metaphysician Alfred North Whitehead

Kurt Gödel's Incompleteness Theorem says (i) all closed systems are unprovable within themselves and, that (ii) all open systems are rightly understood as incomplete. - R.E. Slater

The most true thing about you is what God has said to you in Christ, "You are My Beloved." - Tripp Fuller

The God among us is the God who refuses to be God without us, so great is God's Love. - Tripp Fuller

According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for this world to recreate, reclaim, redeem, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater

Our eschatological ethos is to love. To stand with those who are oppressed. To stand against those who are oppressing. It is that simple. Love is our only calling and Christian Hope. - R.E. Slater

Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger

Exploring the edge of life and faith in a post-everything world. - Todd Littleton

I don't need another reason to believe, your love is all around for me to see. – Anon

Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII

Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut

Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest

We become who we are by what we believe and can justify. - R.E. Slater

People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. – Anon

Certainly, God's love has made fools of us all. - R.E. Slater

An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater

Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann

Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument. There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is irreducibly subject and never made as an object, a force, a power, or a principle that can be manipulated. - Emil Brunner

“Ehyeh Asher Ehyeh” means "I will be that who I have yet to become." - God (Ex 3.14) or, conversely, “I AM who I AM Becoming.”

Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton

The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table to share life with one another as a new kind of family. When this happens, we show to the world what love, justice, peace, reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. – Anon

The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul

The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah

If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer

God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power is made perfect in weakness; and His grace is sufficient for all. – Anon

Our little [biblical] systems have their day; they have their day and cease to be. They are but broken lights of Thee, and Thou, O God art more than they. - Alfred Lord Tennyson

We can’t control God; God is uncontrollable. God can’t control us; God’s love is uncontrolling! - Thomas Jay Oord

Life in perspective but always in process... as we are relational beings in process to one another, so life events are in process in relation to each event... as God is to Self, is to world, is to us... like Father, like sons and daughters, like events... life in process yet always in perspective. - R.E. Slater

To promote societal transition to sustainable ways of living and a global society founded on a shared ethical framework which includes respect and care for the community of life, ecological integrity, universal human rights, respect for diversity, economic justice, democracy, and a culture of peace. - The Earth Charter Mission Statement

Christian humanism is the belief that human freedom, individual conscience, and unencumbered rational inquiry are compatible with the practice of Christianity or even intrinsic in its doctrine. It represents a philosophical union of Christian faith and classical humanist principles. - Scott Postma

It is never wise to have a self-appointed religious institution determine a nation's moral code. The opportunities for moral compromise and failure are high; the moral codes and creeds assuredly racist, discriminatory, or subjectively and religiously defined; and the pronouncement of inhumanitarian political objectives quite predictable. - R.E. Slater

God's love must both center and define the Christian faith and all religious or human faiths seeking human and ecological balance in worlds of subtraction, harm, tragedy, and evil. - R.E. Slater

In Whitehead’s process ontology, we can think of the experiential ground of reality as an eternal pulse whereby what is objectively public in one moment becomes subjectively prehended in the next, and whereby the subject that emerges from its feelings then perishes into public expression as an object (or “superject”) aiming for novelty. There is a rhythm of Being between object and subject, not an ontological division. This rhythm powers the creative growth of the universe from one occasion of experience to the next. This is the Whiteheadian mantra: “The many become one and are increased by one.” - Matthew Segall

Without Love there is no Truth. And True Truth is always Loving. There is no dichotomy between these terms but only seamless integration. This is the premier centering focus of a Processual Theology of Love. - R.E. Slater

-----

Note: Generally I do not respond to commentary. I may read the comments but wish to reserve my time to write (or write from the comments I read). Instead, I'd like to see our community help one another and in the helping encourage and exhort each of us towards Christian love in Christ Jesus our Lord and Savior. - re slater

Tuesday, February 20, 2024

Human Language: Info Density Grants Speed But Less Breadth


Table link


Human languages with greater information density

have higher communication speed but lower 

conversation breadth

article link

Abstract

Human languages vary widely in how they encode information within circumscribed semantic domains (for example, time, space, colour, human body parts and activities), but little is known about the global structure of semantic information and nothing about its relation to human communication.

We first show that across a sample of ~1,000 languages, there is broad variation in how densely languages encode information into words.

Second, we show that this language information density is associated with a denser configuration of semantic information.

Finally, we trace the relationship between language information density and patterns of communication, showing that informationally denser languages tend towards faster communication but conceptually narrower conversations or expositions within which topics are discussed at greater depth.

These results highlight an important source of variation across the human communicative channel, revealing that the structure of language shapes the nature and texture of human engagement, with consequences for human behaviour across levels of society.

This is a preview of subscription content, access via your institution

Data availability

The datasets analysed in the current study are available at the following links: for parallel corpora, https://opus.nlpl.eu/; for conversations, https://www.ldc.upenn.edu/; for audio duration, https://wordproject.org and https://faithcomesbyhearing.com; for language family and location, https://glottolog.org/; for Wikipedia articles, https://pypi.org/project/Wikipedia-API/; for language fusion and informativity, https://github.com/OlenaShcherbakova/Sociodemographic_factors_complexity/tree/v2.0/data; and for morphological complexity, https://github.com/mllewis/langLearnVar. The language information density, semantic density and communicative speed measures can be found at https://github.com/peteaceves/Language_Density_and_Communication.

Code availability

The code used to create the language information density and semantic density measures was written in Python v.3.7.2 and can be found at https://github.com/peteaceves/Language_Density_and_Communication. The statistical models were run in Stata v.17, and the code can be found in the Supplementary Information.

References

  1. de Saussure, F. Course in General Linguistics (Open Court, 1986).

  2. Bloomfield, L. Language (Holt, Rinehart & Winston, 1933).

  3. Sapir, E. Language: An Introduction to the Study of Speech (Harcourt, Brace, 1921).

  4. Levelt, W. J. M. Speaking: From Intention to Articulation (MIT Press, 1989).

  5. Thompson, B., Roberts, S. G. & Lupyan, G. Cultural influences on word meanings revealed through large-scale semantic alignment. Nat. Hum. Behav. 4, 1029–1038 (2020).

    Article PubMed Google Scholar 

  6. Youn, H. et al. On the universal structure of human lexical semantics. Proc. Natl Acad. Sci. USA 113, 1766–1771 (2016).

    Article CAS PubMed PubMed Central Google Scholar 

  7. Winawer, J. et al. Russian blues reveal effects of language on color discrimination. Proc. Natl Acad. Sci. USA 104, 7780–7785 (2007).

    Article CAS PubMed PubMed Central Google Scholar 

  8. Kay, P. & McDaniel, C. K. The linguistic significance of the meanings of basic color terms. Language 54, 610–646 (1978).

    Article Google Scholar 

  9. Davidoff, J., Davies, I. & Roberson, D. Colour categories in a stone-age tribe. Nature 398, 203–204 (1999).

    Article CAS PubMed Google Scholar 

  10. Kay, P., Berlin, B., Maffi, L. & Merrifield, W. in Color Categories in Language and Thought (eds Hardin, C. L. & Maffi, L.) 21–56 (Cambridge Univ. Press, 1997).

  11. Dolscheid, S., Shayan, S., Majid, A. & Casasanto, D. The thickness of musical pitch: psychophysical evidence for linguistic relativity. Psychol. Sci. 24, 613–621 (2013).

    Article PubMed Google Scholar 

  12. Bock, K., Carreiras, M. & Meseguer, E. Number meaning and number grammar in English and Spanish. J. Mem. Lang. 66, 17–37 (2012).

    Article Google Scholar 

  13. Malt, B. C. et al. Talking about walking: biomechanics and the language of locomotion. Psychol. Sci. 19, 232–240 (2008).

    Article PubMed Google Scholar 

  14. Malt, B. C. et al. Human locomotion in languages: constraints on moving and meaning. J. Mem. Lang. 74, 107–123 (2014).

    Article Google Scholar 

  15. Casasanto, D. & Boroditsky, L. Time in the mind: using space to think about time. Cognition 106, 579–593 (2008).

    Article PubMed Google Scholar 

  16. Fuhrman, O. et al. How linguistic and cultural forces shape conceptions of time: English and Mandarin time in 3D. Cogn. Sci. 35, 1305–1328 (2011).

    Article PubMed Google Scholar 

  17. Lai, V. T. & Boroditsky, L. The immediate and chronic influence of spatio-temporal metaphors on the mental representations of time in English, Mandarin, and Mandarin-English speakers. Front. Psychol. 4, 142 (2013).

    PubMed PubMed Central Google Scholar 

  18. Levinson, S. C. Space in Language and Cognition: Explorations in Cognitive Diversity (Cambridge Univ. Press, 2003).

  19. Levinson, S., Meira, S. & The Language and Cognition Group. ‘Natural concepts’ in the spatial topological domain—adpositional meanings in crosslinguistic perspective: an exercise in semantic typology. Language 79, 485–516 (2003).

  20. Majid, A., Bowerman, M., Kita, S., Haun, D. B. M. & Levinson, S. C. Can language restructure cognition? The case for space. Trends Cogn. Sci. 8, 108–114 (2004).

    Article PubMed Google Scholar 

  21. Feist, M. I. Space between languages. Cogn. Sci. 32, 1177–1199 (2008).

    Article PubMed Google Scholar 

  22. Majid, A., Boster, J. S. & Bowerman, M. The cross-linguistic categorization of everyday events: a study of cutting and breaking. Cognition 109, 235–250 (2008).

    Article PubMed Google Scholar 

  23. Saji, N. et al. Word learning does not end at fast-mapping: evolution of verb meanings through reorganization of an entire semantic domain. Cognition 118, 45–61 (2011).

    Article PubMed Google Scholar 

  24. Lewis, M. & Lupyan, G. Gender stereotypes are reflected in the distributional structure of 25 languages. Nat. Hum. Behav. 4, 1021–1028 (2020).

    Article PubMed Google Scholar 

  25. Enfield, N. J., Majid, A. & van Staden, M. Cross-linguistic categorisation of the body: introduction. Lang. Sci. 28, 137–147 (2006).

    Article Google Scholar 

  26. Brown, C. H. Language and Living Things: Uniformities in Folk Classification and Naming (Rutgers Univ. Press, 1984).

  27. Berlin, B. Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies (Princeton Univ. Press, 2014).

  28. Kemp, C., Xu, Y. & Regier, T. Semantic typology and efficient communication. Annu. Rev. Linguist. 4, 109–128 (2018).

    Article Google Scholar 

  29. Enfield, N. J. Linguistic relativity from reference to agency. Annu. Rev. Anthropol. 44, 207–224 (2015).

    Article Google Scholar 

  30. Hofstadter, D. & Sander, E. Surfaces and Essences: Analogy as the Fuel and Fire of Thinking (Basic Books, 2013).

  31. Li, P. & Gleitman, L. Turning the tables: language and spatial reasoning. Cognition 83, 265–294 (2002).

    Article CAS PubMed Google Scholar 

  32. Gleitman, L. & Fisher, C. in The Cambridge Companion to Chomsky (ed. McGilvray, J. A.) 123–142 (Cambridge Univ. Press, 2005).

  33. Pinker, S. The Language Instinct (HarperCollins, 1994).

  34. Berlin, B. & Kay, P. Basic Color Terms: Their Universality and Evolution (Univ. California Press, 1969).

  35. Evans, N. & Levinson, S. C. The myth of language universals: language diversity and its importance for cognitive science. Behav. Brain Sci. 32, 429–448, discussion 448–494 (2009).

  36. Davidson, D. On the very idea of a conceptual scheme. Proc. Addresses Am. Phil. Assoc. 47, 5–20 (1973).

    Article Google Scholar 

  37. Lupyan, G. & Dale, R. Why are there different languages? The role of adaptation in linguistic diversity. Trends Cogn. Sci. 20, 649–660 (2016).

    Article PubMed Google Scholar 

  38. Pellegrino, F., Coupé, C. & Marsico, E. Across-language perspective on speech information rate. Language 87, 539–558 (2011).

    Article Google Scholar 

  39. Coupé, C., Oh, Y. M., Dediu, D. & Pellegrino, F. Different languages, similar encoding efficiency: comparable information rates across the human communicative niche. Sci. Adv. 5, eaaw2594 (2019).

    Article PubMed PubMed Central Google Scholar 

  40. Lewis, M., Cahill, A., Madnani, N. & Evans, J. Local similarity and global variability characterize the semantic space of human languages. Proc. Natl Acad. Sci. 120, e2300986120 (2023).

  41. Gibson, E. et al. How efficiency shapes human language. Trends Cogn. Sci. 23, 389–407 (2019).

    Article PubMed Google Scholar 

  42. Bentz, C., Alikaniotis, D., Cysouw, M. & Ferrer-i-Cancho, R. The entropy of words—learnability and expressivity across more than 1000 languages. Entropy 19, 275 (2017).

    Article Google Scholar 

  43. Bellos, D. Is That a Fish in Your Ear? Translation and the Meaning of Everything (Penguin Books, 2011).

  44. Huffman, D. A. A method for the construction of minimum-redundancy codes. Proc. IRE 40, 1098–1101 (1952).

    Article Google Scholar 

  45. Harris, Z. S. Distributional structure. Word World 10, 146–162 (1954).

    Article Google Scholar 

  46. Jurafsky, D. & Martin, J. H. Speech and Language Processing (Stanford Univ., 2018).

  47. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems Vol. 26 (MIT Press, 2013).

  48. Pennington, J., Socher, R. & Manning, C. Glove: global vectors for word representation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1532–1543 (Association for Computational Linguistics, 2014).

  49. Kozlowski, A. C., Taddy, M. & Evans, J. A. The geometry of culture: analyzing the meanings of class through word embeddings. Am. Sociol. Rev. 84, 905–949 (2019).

    Article Google Scholar 

  50. Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language corpora contain human-like biases. Science 356, 183–186 (2017).

    Article CAS PubMed Google Scholar 

  51. Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V. & Kalai, A. T. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Advances in Neural Information Processing Systems 4349–4357 (MIT Press, 2016).

  52. Hamilton, W. L., Leskovec, J. & Jurafsky, D. Diachronic word embeddings reveal statistical laws of semantic change. Preprint at https://arxiv.org/abs/1605.09096v6 (2016).

  53. Arora, S., Li, Y., Liang, Y., Ma, T. & Risteski, A. Linear algebraic structure of word senses, with applications to polysemy. Trans. Assoc. Comput. Linguist. 6, 483–495 (2018).

    Article Google Scholar 

  54. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article MathSciNet Google Scholar 

  55. Mnih, A. & Hinton, G. Three new graphical models for statistical language modelling. In Proc. 24th International Conference on Machine Learning 641–648 (Association for Computing Machinery, 2007).

  56. Arora, S., Li, Y., Liang, Y., Ma, T. & Risteski, A. A latent variable model approach to PMI-based word embeddings. Trans. Assoc. Comput. Linguist. 4, 385–399 (2016).

    Article Google Scholar 

  57. Davelaar, E. J. & Raaijmakers, J. G. W. in Cognitive Search: Evolution, Algorithms, and the Brain (eds Todd, P. M. et al.) 177–194 (MIT Press, 2012).

  58. Romney, A. K., Brewer, D. D. & Batchelder, W. H. Predicting clustering from semantic structure. Psychol. Sci. 4, 28–34 (1993).

    Article Google Scholar 

  59. Howard, M. W., Jing, B., Addis, K. M. & Kahana, M. J. Semantic structure and episodic memory Ch. 7. in LSA: A Road Towards Meaning (eds McNamara, D. & Dennis, S.) (Erlbaum, 2007).

  60. Abbott, J. T., Austerweil, J. L. & Griffiths, T. L. Random walks on semantic networks can resemble optimal foraging. Psychol. Rev. 122, 558–569 (2015).

    Article PubMed Google Scholar 

  61. Hills, T. T., Todd, P. M. & Jones, M. N. Foraging in semantic fields: how we search through memory. Top. Cogn. Sci. 7, 513–534 (2015).

    Article PubMed Google Scholar 

  62. Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).

    Article CAS PubMed Google Scholar 

  63. Pirolli, P. L. T. Information Foraging Theory: Adaptive Interaction with Information (Oxford Univ. Press, 2007).

  64. Harbison, J. I., Dougherty, M. R., Davelaar, E. J. & Fayyad, B. On the lawfulness of the decision to terminate memory search. Cognition 111, 416–421 (2009).

    Article PubMed Google Scholar 

  65. Lewis, M. & Frank, M. C. Linguistic niches emerge from pressures at multiple timescales. In Proc. 38th Annual Conference of the Cognitive Science Society 1385–1390 (Cognitive Science Society, 2016).

  66. Lupyan, G. & Dale, R. Language structure is partly determined by social structure. PLoS ONE 5, e8559 (2010).

    Article PubMed PubMed Central Google Scholar 

  67. Shcherbakova, O. et al. Societies of strangers do not speak less complex languages. Sci. Adv. 9, eadf7704 (2023).

    Article PubMed PubMed Central Google Scholar 

  68. Pellegrino, F., Coupé, C. & Marsico, E. A cross-language perspective on speech information rate. Language 87, 539–558 (2011).

    Article Google Scholar 

  69. Schürmann, T. & Grassberger, P. Entropy estimation of symbol sequences. Chaos 6, 414–427 (1996).

    Article MathSciNet PubMed Google Scholar 

  70. Shannon, C. E. Prediction and entropy of printed English. Bell Syst. Tech. J. 30, 50–64 (1951).

    Article Google Scholar 

  71. Kontoyiannis, I., Algoet, P. H., Suhov, Y. M. & Wyner, A. J. Nonparametric entropy estimation for stationary processes and random fields, with applications to English text. IEEE Trans. Inf. Theory 44, 1319–1327 (1998).

    Article MathSciNet Google Scholar 

  72. Levinson, S. C. Presumptive Meanings: The Theory of Generalized Conversational Implicature (MIT Press, 2000).

  73. Caplan, S., Kodner, J. & Yang, C. Miller’s monkey updated: communicative efficiency and the statistics of words in natural language. Cognition 205, 104466 (2020).

    Article PubMed Google Scholar 

  74. Brochhagen, T. & Boleda, G. When do languages use the same word for different meanings? The Goldilocks principle in colexification. Cognition 226, 105179 (2022).

    Article PubMed Google Scholar 

  75. Bentz, C., Dediu, D., Verkerk, A. & Jäger, G. The evolution of language families is shaped by the environment beyond neutral drift. Nat. Hum. Behav. 2, 816–821 (2018).

    Article PubMed Google Scholar 

  76. Olson, J. A., Nahas, J., Chmoulevitch, D., Cropper, S. J. & Webb, M. E. Naming unrelated words predicts creativity. Proc. Natl Acad. Sci. USA 118, e2022340118 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  77. Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a collective intelligence factor in the performance of human groups. Science 330, 686–688 (2010).

    Article CAS PubMed Google Scholar 

  78. McGrath, J. E. Groups: Interaction and Performance (Prentice-Hall, 1984).

  79. McMahan, P. & Evans, J. Ambiguity and engagement. Am. J. Sociol. 124, 860–912 (2018).

    Article Google Scholar 

  80. Murray, D. et al. Unsupervised embedding of trajectories captures the latent structure of mobility. Preprint at https://arxiv.org/abs/2012.02785 (2020).

  81. Lucy, J. A. Linguistic relativity. Annu. Rev. Anthropol. 26, 291–312 (1997).

    Article Google Scholar 

  82. Lucy, J. A. Language Diversity and Thought: A Reformulation of the Linguistic Relativity Hypothesis (Cambridge Univ. Press, 1992).

  83. Tiedemann, J. Parallel data, tools and interfaces in OPUS. In Proc. 8th International Conference on Language Resources and Evaluation (eds Calzolari, N. et al.) 2214–2218 (European Language Resources Association, 2012).

  84. Christodouloupoulos, C. & Steedman, M. A massively parallel corpus: the Bible in 100 languages. Lang. Resour. Eval. 49, 375–395 (2015).

    Article PubMed Google Scholar 

  85. YouVersion https://www.bible.com/ (2017).

  86. ParaCrawl (NTT Communication Science Laboratories, accessed 1 June 2017); https://www.paracrawl.eu/

  87. OpenSubtitles https://www.opensubtitles.org/ (2017).

  88. Rafalovitch, A. & Dale, R. United Nations General Assembly resolutions: a six-language parallel corpus. In Proc. MT Summit XII (Association for Computational Linguistics, 2009).

  89. Juola, P. Measuring linguistic complexity: the morphological tier. J. Quant. Linguist. 5, 206–213 (1998).

    Article Google Scholar 

  90. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at https://arxiv.org/abs/1301.3781 (2013).

  91. Mikolov, T., Yih, W.-T. & Zweig, G. Linguistic regularities in continuous space word representations. In Proc. NAACL-HLT 2013 746–751 (Association for Computational Linguistics, 2013).

  92. Hammarström, H., Forkel, R., Haspelmath, M. & Bank, S. Glottolog v.4.4. Max Planck Institute for Evolutionary Anthropology https://glottolog.org (2021).

  93. Chen, X., Ender, P., Mitchell, M. & Wells, C. Regression with Stata. UCLA https://stats.oarc.ucla.edu/stata/webbooks/reg/ (2003).

  94. Huber, P. J. The behavior of maximum likelihood estimates under nonstandard conditions. In Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability Vol. 1 (Eds Le Cam, L. M. & Neyman, J.) 221–233 (Univ. California Press, 1967).

  95. White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–838 (1980).

    Article MathSciNet Google Scholar 

  96. Bills, A. et al. IARPA Babel Amharic Language Pack IARPA-babel307b-v1.0b (Linguistic Data Consortium, 2019); https://doi.org/10.35111/ehfb-ka57

  97. Bills, A. et al. IARPA Babel Bengali Language Pack IARPA-babel103b-v0.4b (Linguistic Data Consortium, 2016); https://doi.org/10.35111/5jdb-wp44

  98. Andresen, L. et al. IARPA Babel Cebuano Language Pack IARPA-babel301b-v2.0b (Linguistic Data Consortium, 2018); https://doi.org/10.35111/f0b3-5398

  99. Bills, A. et al. IARPA Babel Georgian Language Pack IARPA-babel404b-v1.0a (Linguistic Data Consortium, 2016); https://doi.org/10.35111/dcr5-ga44

  100. Andresen, L. et al. IARPA Babel Guarani Language Pack IARPA-babel305b-v1.0c (Linguistic Data Consortium, 2019); https://doi.org/10.35111/qdg9-7a64

  101. Adams, N. et al. IARPA Babel Igbo Language Pack IARPA-babel306b-v2.0c (Linguistic Data Consortium, 2019); https://doi.org/10.35111/7988-wd73

  102. Bills, A. et al. IARPA Babel Kazakh Language Pack IARPA-babel302b-v1.0a (Linguistic Data Consortium, 2018); https://doi.org/10.35111/rwmc-nm96

  103. Benowitz, D. et al. IARPA Babel Lithuanian Language Pack IARPA-babel304b-v1.0b (Linguistic Data Consortium, 2019); https://doi.org/10.35111/m5qd-dk93

  104. Conners, T. et al. IARPA Babel Tagalog Language Pack IARPA-babel106-v0.2g (Linguistic Data Consortium, 2016); https://doi.org/10.35111/mp23-rd11

  105. Bills, A. et al. IARPA Babel Tamil Language Pack IARPA-babel204b-v1.1b (Linguistic Data Consortium, 2017); https://doi.org/10.35111/3j2w-kb06

  106. Bills, A. et al. IARPA Babel Telugu Language Pack IARPA-babel303b-v1.0a (Linguistic Data Consortium, 2018); https://doi.org/10.35111/vm6x-za86

  107. Andresen, J. et al. IARPA Babel Turkish Language Pack IARPA-babel105b-v0.5 (Linguistic Data Consortium, 2016); https://doi.org/10.35111/mb8z-6p26

  108. Andrus, T. et al. IARPA Babel Vietnamese Language Pack IARPA-babel107b-v0.7 (Linguistic Data Consortium, 2017); https://doi.org/10.35111/yrqp-r555

  109. Adams, N. et al. IARPA Babel Zulu Language Pack IARPA-babel206b-v0.1e LDC2017S19 (Linguistic Data Consortium, 2017); https://doi.org/10.35111/te29-8988

  110. Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. Enriching word vectors with subword information. In Transactions of the Association for Computational Linguistics Vol. 5 (Association for Computational Linguistics, 2017).

  111. Grave, E., Bojanowski, P., Gupta, P., Joulin, A. & Mikolov, T. Learning word vectors for 157 languages. In Proc. International Conference on Language Resources and Evaluation (Eds Calzolari, N. et. al.) (European Language Resources Association, 2018).

  112. Gordon, R. G. Ethnologue, Languages of the World (SIL International, accessed 1 October 2017); https://www.ethnologue.com

  113. Hofstede, G. Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across Nations (SAGE, 2001).

  114. Hofstede, G. Culture’s Consequences: International Differences in Work-Related Values (Sage, 1984).

Download references

Acknowledgements

We thank Z. Chen (Stanford University) for her excellent research assistance and are grateful for comments from C. Chambers (Johns Hopkins University), M. Lewis (Meta), D. Casasanto (Cornell University), G. Lupyan (University of Wisconsin-Madison), J. L. Martin (University of Chicago), A. Sharkey (Arizona State University), J. Murphy (RAND Corporation) and J. Chu (Massachusetts Institute of Technology). P.A. also thanks the judges of the 2017 INFORMS/Organization Science Dissertation Proposal Competition for their feedback and acknowledges support from the National Science Foundation Doctoral Dissertation Research Improvement Grant (no. 1702788). The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

No comments:

Post a Comment