According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for
this world to recreate, reclaim, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater
Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of
explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger
Exploring the edge of life and faith in a post-everything world. - Todd Littleton
I don't need another reason to believe, your love is all around for me to see. - anon
Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII
Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut
Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest
People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. - anon
... Certainly God's love has made fools of us all. - R.E. Slater
An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater
Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann
Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument.
There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is
irreducibly subject and never made as an object, a force, a
power, or a principle that can be manipulated. - Emil Brunner
Ehyeh Asher Ehyeh means "I will be that who I have yet to become." - God (Ex 3.14)
Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton
The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table
to share life with one another as a new kind of family. When this happens we show to the world what love, justice, peace,
reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants
us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. - anon
The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul
The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals
and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah
If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer
God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power
is made perfect in weakness; and His grace is sufficient for all. - anon

Thursday, January 16, 2014

The Biologic Symphony of Life: Vibrating Protein Strings



Using a new imaging technique they developed, scientists have managed to observe and document the vibrations of lysozyme, an antibacterial protein found in many animals. This graphic visualizes the vibrations in lysozyme as it is excited by terahertz light (depicted by the red wave arrow). Such vibrations, long thought to exist, have never before been described in such detail, said lead researcher Andrea Markelz, a UB physicist. Credit: Andrea Markelz and Katherine Niessen.

January 2014

The symphony of life, revealed: New imaging technique captures vibrations of proteins

Like the strings on a violin or the pipes of an organ, the proteins in the human body vibrate in different patterns, scientists have long suspected.

Now, a new study provides what researchers say is the first conclusive evidence that this is true.

Using a technique they developed based on terahertz near-field microscopy, scientists from the University at Buffalo and Hauptman-Woodward Medical Research Institute (HWI) have for the first time observed in detail the vibrations of lysozyme, an antibacterial protein found in many animals.

The team found that the vibrations, which were previously thought to dissipate quickly, actually persist in molecules like the "ringing of a bell," said UB physics professor Andrea Markelz, PhD, who led the study.

These tiny motions enable proteins to change shape quickly so they can readily bind to other proteins, a process that is necessary for the body to perform critical biological functions like absorbing oxygen, repairing cells and replicating DNA, Markelz said.

The research opens the door to a whole new way of studying the basic cellular processes that enable life.

"People have been trying to measure these vibrations in proteins for many, many years, since the 1960s," Markelz said. "In the past, to look at these large-scale, correlated motions in proteins was a challenge that required extremely dry and cold environments and expensive facilities."

"Our technique is easier and much faster," she said. "You don't need to cool the proteins to below freezing or use a synchrotron light source or a nuclear reactor—all things people have used previously to try and examine these vibrations."

The findings will appear in Nature Communications on Jan. 16, and publication of information on the research is prohibited until 5 a.m. U.S. Eastern Time on that day.

To observe the protein vibrations, Markelz' team relied on an interesting characteristic of proteins: The fact that they vibrate at the same frequency as the light they absorb.

This is analogous to the way wine glasses tremble and shatter when a singer hits exactly the right note. Markelz explained: Wine glasses vibrate because they are absorbing the energy of sound waves, and the shape of a glass determines what pitches of sound it can absorb. Similarly, proteins with different structures will absorb and vibrate in response to light of different frequencies.

So, to study vibrations in lysozyme, Markelz and her colleagues exposed a sample to light of different frequencies and polarizations, and measured the types of light the protein absorbed.

This technique, developed with Edward Snell, a senior research scientist at HWI and assistant professor of structural biology at UB, allowed the team to identify which sections of the protein vibrated under normal biological conditions. The researchers were also able to see that the vibrations endured over time, challenging existing assumptions.

"If you tap on a bell, it rings for some time, and with a sound that is specific to the bell. This is how the proteins behave," Markelz said. "Many scientists have previously thought a protein is more like a wet sponge than a bell: If you tap on a wet sponge, you don't get any sustained sound."

Markelz said the team's technique for studying vibrations could be used in the future to document how natural and artificial inhibitors stop proteins from performing vital functions by blocking desired vibrations.

"We can now try to understand the actual structural mechanisms behind these biological processes and how they are controlled," Markelz said.

"The cellular system is just amazing," she said. "You can think of a cell as a little machine that does lots of different things—it senses, it makes more of itself, it reads and replicates DNA, and for all of these things to occur, proteins have to vibrate and interact with one another."



No comments:

Post a Comment