Quotes & Sayings


We, and creation itself, actualize the possibilities of the God who sustains the world, towards becoming in the world in a fuller, more deeper way. - R.E. Slater

There is urgency in coming to see the world as a web of interrelated processes of which we are integral parts, so that all of our choices and actions have [consequential effects upon] the world around us. - Process Metaphysician Alfred North Whitehead

Kurt Gödel's Incompleteness Theorem says (i) all closed systems are unprovable within themselves and, that (ii) all open systems are rightly understood as incomplete. - R.E. Slater

The most true thing about you is what God has said to you in Christ, "You are My Beloved." - Tripp Fuller

The God among us is the God who refuses to be God without us, so great is God's Love. - Tripp Fuller

According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for this world to recreate, reclaim, redeem, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater

Our eschatological ethos is to love. To stand with those who are oppressed. To stand against those who are oppressing. It is that simple. Love is our only calling and Christian Hope. - R.E. Slater

Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger

Exploring the edge of life and faith in a post-everything world. - Todd Littleton

I don't need another reason to believe, your love is all around for me to see. – Anon

Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII

Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut

Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest

We become who we are by what we believe and can justify. - R.E. Slater

People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. – Anon

Certainly, God's love has made fools of us all. - R.E. Slater

An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater

Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann

Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument. There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is irreducibly subject and never made as an object, a force, a power, or a principle that can be manipulated. - Emil Brunner

“Ehyeh Asher Ehyeh” means "I will be that who I have yet to become." - God (Ex 3.14) or, conversely, “I AM who I AM Becoming.”

Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton

The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table to share life with one another as a new kind of family. When this happens, we show to the world what love, justice, peace, reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. – Anon

The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul

The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah

If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer

God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power is made perfect in weakness; and His grace is sufficient for all. – Anon

Our little [biblical] systems have their day; they have their day and cease to be. They are but broken lights of Thee, and Thou, O God art more than they. - Alfred Lord Tennyson

We can’t control God; God is uncontrollable. God can’t control us; God’s love is uncontrolling! - Thomas Jay Oord

Life in perspective but always in process... as we are relational beings in process to one another, so life events are in process in relation to each event... as God is to Self, is to world, is to us... like Father, like sons and daughters, like events... life in process yet always in perspective. - R.E. Slater

To promote societal transition to sustainable ways of living and a global society founded on a shared ethical framework which includes respect and care for the community of life, ecological integrity, universal human rights, respect for diversity, economic justice, democracy, and a culture of peace. - The Earth Charter Mission Statement

Christian humanism is the belief that human freedom, individual conscience, and unencumbered rational inquiry are compatible with the practice of Christianity or even intrinsic in its doctrine. It represents a philosophical union of Christian faith and classical humanist principles. - Scott Postma

It is never wise to have a self-appointed religious institution determine a nation's moral code. The opportunities for moral compromise and failure are high; the moral codes and creeds assuredly racist, discriminatory, or subjectively and religiously defined; and the pronouncement of inhumanitarian political objectives quite predictable. - R.E. Slater

God's love must both center and define the Christian faith and all religious or human faiths seeking human and ecological balance in worlds of subtraction, harm, tragedy, and evil. - R.E. Slater

In Whitehead’s process ontology, we can think of the experiential ground of reality as an eternal pulse whereby what is objectively public in one moment becomes subjectively prehended in the next, and whereby the subject that emerges from its feelings then perishes into public expression as an object (or “superject”) aiming for novelty. There is a rhythm of Being between object and subject, not an ontological division. This rhythm powers the creative growth of the universe from one occasion of experience to the next. This is the Whiteheadian mantra: “The many become one and are increased by one.” - Matthew Segall

Without Love there is no Truth. And True Truth is always Loving. There is no dichotomy between these terms but only seamless integration. This is the premier centering focus of a Processual Theology of Love. - R.E. Slater

-----

Note: Generally I do not respond to commentary. I may read the comments but wish to reserve my time to write (or write off the comments I read). Instead, I'd like to see our community help one another and in the helping encourage and exhort each of us towards Christian love in Christ Jesus our Lord and Savior. - re slater

Showing posts with label Science and the Universe - QP. Show all posts
Showing posts with label Science and the Universe - QP. Show all posts

Thursday, November 18, 2021

We now know the big bang theory is (probably) not how the universe began



We now know the big bang theory is
(probably) not how the universe began

by Ethan Siegel
October 30, 2021


The Big Bang still happened a very long time ago,
but it wasn’t the beginning we once supposed it to be.


Where did all this come from? In every direction we care to observe, we find stars, galaxies, clouds of gas and dust, tenuous plasmas, and radiation spanning the gamut of wavelengths: from radio to infrared to visible light to gamma rays. No matter where or how we look at the universe, it’s full of matter and energy absolutely everywhere and at all times. And yet, it’s only natural to assume that it all came from somewhere. If you want to know the answer to the biggest question of all — the question of our cosmic origins — you have to pose the question to the universe itself, and listen to what it tells you.

Today, the universe as we see it is expanding, rarifying (getting less dense), and cooling. Although it’s tempting to simply extrapolate forward in time, when things will be even larger, less dense, and cooler, the laws of physics allow us to extrapolate backward just as easily. Long ago, the universe was smaller, denser, and hotter. How far back can we take this extrapolation? Mathematically, it’s tempting to go as far as possible: all the way back to infinitesimal sizes and infinite densities and temperatures, or what we know as a singularity. This idea, of a singular beginning to space, time, and the universe, was long known as the Big Bang.

But physically, when we looked closely enough, we found that the universe told a different story. Here’s how we know the Big Bang isn’t the beginning of the universe anymore.

Theoretical roots of big bang

Like most stories in science, the origin of the Big Bang has its roots in both theoretical and experimental/observational realms. On the theory side, Einstein put forth his general theory of relativity in 1915: a novel theory of gravity that sought to overthrow Newton’s theory of universal gravitation. Although Einstein’s theory was far more intricate and complicated, it wasn’t long before the first exact solutions were found.

1 - In 1916, Karl Schwarzschild found the solution for a pointlike mass, which describes a nonrotating black hole.

2 - In 1917, Willem de Sitter found the solution for an empty universe with a cosmological constant, which describes an exponentially expanding universe.

3 - From 1916 to 1921, the Reissner-Nordström solution, found independently by four researchers, described the spacetime for a charged, spherically symmetric mass.

4 - In 1921, Edward Kasner found a solution that described a matter-and-radiation-free universe that’s anisotropic: different in different directions.

5 - In 1922, Alexander Friedmann discovered the solution for an isotropic (same in all directions) and homogeneous (same at all locations) universe, where any and all types of energy, including matter and radiation, were present.

That last one was very compelling for two reasons. One is that it appeared to describe our universe on the largest scales, where things appear similar, on average, everywhere and in all directions. And two, if you solved the governing equations for this solution — the Friedmann equations — you’d find that the universe it describes cannot be static, but must either expand or contract.

This idea, of a singular beginning to space, time, and the universe, was long known as the Big Bang. But physically, when we looked closely enough, we found that the universe told a different story.

This latter fact was recognized by many, including Einstein, but it wasn’t taken particularly seriously until the observational evidence began to support it. In the 1910s, astronomer Vesto Slipher started observing certain nebulae, which some argued might be galaxies outside of our Milky Way, and found that they were moving fast: far faster than any other objects within our galaxy. Moreover, the majority of them were moving away from us, with fainter, smaller nebulae generally appearing to move faster.

Then, in the 1920s, Edwin Hubble began measuring individual stars in these nebulae and eventually determined the distances to them. Not only were they much farther away than anything else in the galaxy, but the ones at the greater distances were moving away faster than the closer ones.

The universe was expanding.


An illustration of our cosmic history, from the Big Bang until the present, within the context of the expanding universe. The first Friedmann equation describes all of these epochs, from inflation to the Big Bang to the present and far into the future, perfectly accurately, even today. (Credit: NASA/WMAP science team)

Cornerstones of the big bang theory

Georges Lemaître was the first, in 1927, to recognize this. Upon discovering the expansion, he extrapolated backward, theorizing — as any competent mathematician might — that you could go as far back as you wanted: to what he called the primeval atom. In the beginning, he realized, the universe was a hot, dense, and rapidly expanding collection of matter and radiation, and everything around us emerged from this primordial state.

This idea was later developed by others to make a set of additional predictions:

1 - The universe, as we see it today, is more evolved than it was in the past. The farther back we look in space, the farther back we’re also looking in time. So, the objects we see back then should be younger, less gravitationally clumpy, less massive, with fewer heavy elements, and with less-evolved structure. There should even be a point beyond which no stars or galaxies were present.

2 - At some point, the radiation was so hot that neutral atoms couldn’t stably form, because radiation would reliably kick any electrons off of the nuclei they were attempting to bind to, and so there should be a leftover — now cold and sparse — bath of cosmic radiation from this time.

3 - At some extremely early time it would have been so hot that even atomic nuclei would be blasted apart, implying there was an early, pre-stellar phase where nuclear fusion would have occurred: Big Bang nucleosynthesis. From that, we expect there to have been at least a population of light elements and their isotopes spread throughout the universe before any stars formed.

In conjunction with the expanding universe, these four points would become the cornerstone of the Big Bang.

A dangerous game

The growth and evolution of the large-scale structure of the universe, of individual galaxies, and of the stellar populations found within those galaxies all validates the Big Bang’s predictions.

The discovery of a bath of radiation just ~3 K above absolute zero was the key evidence that validated the Big Bang and eliminated many of its most popular alternatives. And the discovery and measurement of the light elements and their ratios — including hydrogen, deuterium, helium-3, helium-4, and lithium-7 — revealed not only which type of nuclear fusion occurred prior to the formation of stars, but also the total amount of normal matter that exists in the universe.

But extrapolating beyond the limits of your measurable evidence is a dangerous, albeit tempting, game to play.

Extrapolating back to as far as your evidence can take you is a tremendous success for science. The physics that took place during the earliest stages of the hot Big Bang imprinted itself onto the universe, enabling us to test our models, theories, and understanding of the universe from that time. The earliest observable imprint, in fact, is the cosmic neutrino background, whose effects show up in both the cosmic microwave background (the Big Bang’s leftover radiation) and the universe’s large-scale structure. This neutrino background comes to us, remarkably, from just ~1 second into the hot Big Bang.

But extrapolating beyond the limits of your measurable evidence is a dangerous, albeit tempting, game to play. After all, if we can trace the hot Big Bang back some 13.8 billion years, all the way to when the universe was less than 1 second old, what’s the harm in going all the way back just one additional second: to the singularity predicted to exist when the universe was 0 seconds old?

The answer, surprisingly, is that there’s a tremendous amount of harm. The reason this is problematic is because beginning at a singularity — at arbitrarily high temperatures, arbitrarily high densities, and arbitrarily small volumes — will have consequences for our universe that aren’t necessarily supported by observations.

For example, if the universe began from a singularity, then it must have sprung into existence with exactly the right balance of “stuff” in it — matter and energy combined — to precisely balance the expansion rate. If there were just a tiny bit more matter, the initially expanding universe would have already recollapsed by now. And if there were a tiny bit less, things would have expanded so quickly that the universe would be much larger than it is today.

The reason this is problematic is because beginning at a singularity — at arbitrarily high temperatures, arbitrarily high densities, and arbitrarily small volumes — will have consequences for our universe that aren’t necessarily supported by observations.

And yet, instead, what we’re observing is that the universe’s initial expansion rate and the total amount of matter and energy within it balance as perfectly as we can measure.

Why?

If the Big Bang began from a singularity, we have no explanation; we simply have to assert “the universe was born this way,” or, as physicists ignorant of Lady Gaga call it, “initial conditions.”

Similarly, a universe that reached arbitrarily high temperatures would be expected to possess leftover high-energy relics, like magnetic monopoles, but we don’t observe any. The universe would also be expected to be different temperatures in regions that are causally disconnected from one another — i.e., are in opposite directions in space at our observational limits — and yet the universe is observed to have equal temperatures everywhere to 99.99%+ precision.

Cosmic inflation

We’re always free to appeal to initial conditions as the explanation for anything, and say, “well, the universe was born this way, and that’s that.” But we’re always far more interested, as scientists, if we can come up with an explanation for the properties we observe.

That’s precisely what cosmic inflation gives us, plus more. Inflation says, sure, extrapolate the hot Big Bang back to a very early, very hot, very dense, very uniform state, but stop yourself before you go all the way back to a singularity. If you want the universe to have the expansion rate and the total amount of matter and energy in it balance, you’ll need some way to set it up in that fashion. The same applies for a universe with the same temperatures everywhere. On a slightly different note, if you want to avoid high-energy relics, you need some way to both get rid of any preexisting ones, and then avoid creating new ones by forbidding your universe from getting too hot once again.

Inflation accomplishes this by postulating a period, prior to the hot Big Bang, where the universe was dominated by a large cosmological constant (or something that behaves similarly): the same solution found by de Sitter way back in 1917. This phase stretches the universe flat, gives it the same properties everywhere, gets rid of any pre-existing high-energy relics, and prevents us from generating new ones by capping the maximum temperature reached after inflation ends and the hot Big Bang ensues. Furthermore, by assuming there were quantum fluctuations generated and stretched across the universe during inflation, it makes new predictions for what types of imperfections the universe would begin with.

Since it was hypothesized back in the 1980s, inflation has been tested in a variety of ways against the alternative: a universe that began from a singularity. When we stack up the scorecard, we find the following:

1 - Inflation reproduces all of the successes of the hot Big Bang; there’s nothing that the hot Big Bang accounts for that inflation can’t also account for.

2 - Inflation offers successful explanations for the puzzles that we simply have to say “initial conditions” for in the hot Big Bang.

3 - Of the predictions where inflation and a hot Big Bang without inflation differ, four of them have been tested to sufficient precision to discriminate between the two. On those four fronts, inflation is 4-for-4, while the hot Big Bang is 0-for-4.

But things get really interesting if we look back at our idea of “the beginning.” Whereas a universe with matter and/or radiation — what we get with the hot Big Bang — can always be extrapolated back to a singularity, an inflationary universe cannot. Due to its exponential nature, even if you run the clock back an infinite amount of time, space will only approach infinitesimal sizes and infinite temperatures and densities; it will never reach it. This means, rather than inevitably leading to a singularity, inflation absolutely cannot get you to one by itself. The idea that “the universe began from a singularity, and that’s what the Big Bang was,” needed to be jettisoned the moment we recognized that an inflationary phase preceded the hot, dense, and matter-and-radiation-filled one we inhabit today.

The idea that “the universe began from a singularity, and that’s what the Big Bang was,” needed to be jettisoned the moment we recognized that an inflationary phase preceded the hot, dense, and matter-and-radiation-filled one we inhabit today.

This new picture gives us three important pieces of information about the beginning of the universe that run counter to the traditional story that most of us learned. First, the original notion of the hot Big Bang, where the universe emerged from an infinitely hot, dense, and small singularity — and has been expanding and cooling, full of matter and radiation ever since — is incorrect. The picture is still largely correct, but there’s a cutoff to how far back in time we can extrapolate it.

Second, observations have well established the state that occurred prior to the hot Big Bang: cosmic inflation. Before the hot Big Bang, the early universe underwent a phase of exponential growth, where any preexisting components to the universe were literally “inflated away.” When inflation ended, the universe reheated to a high, but not arbitrarily high, temperature, giving us the hot, dense, and expanding universe that grew into what we inhabit today.

Lastly, and perhaps most importantly, we can no longer speak with any sort of knowledge or confidence as to how — or even whether — the universe itself began. By the very nature of inflation, it wipes out any information that came before the final few moments: where it ended and gave rise to our hot Big Bang. Inflation could have gone on for an eternity, it could have been preceded by some other nonsingular phase, or it could have been preceded by a phase that did emerge from a singularity. Until the day comes where we discover how to extract more information from the universe than presently seems possible, we have no choice but to face our ignorance. The Big Bang still happened a very long time ago, but it wasn’t the beginning we once supposed it to be.

This article was originally published on our sister site, Big Think. Read the original article here.


What if the universe had no beginning?



What if the universe had no beginning?

by Paul Sutter
October 11, 2021

In the beginning, there was … well, maybe there was no beginning. Perhaps our universe has always existed — and a new theory of quantum gravity reveals how that could work.

"Reality has so many things that most people would associate with sci-fi or even fantasy," said Bruno Bento, a physicist who studies the nature of time at the University of Liverpool in the U.K.

In his work, he employed a new theory of quantum gravity, called causal set theory, in which space and time are broken down into discrete chunks of space-time. At some level, there's a fundamental unit of space-time, according to this theory. 

Bento and his collaborators used this causal-set approach to explore the beginning of the universe. They found that it's possible that the universe had no beginning — that it has always existed into the infinite past and only recently evolved into what we call the Big Bang.

A quantum of gravity

Quantum gravity is perhaps the most frustrating problem facing modern physics. We have two extraordinarily effective theories of the universe: quantum physics and general relativity. Quantum physics has produced a successful description of three of the four fundamental forces of nature (electromagnetism, the weak force and the strong force) down to microscopic scales. General relativity, on the other hand, is the most powerful and complete description of gravity ever devised.

But for all its strengths, general relativity is incomplete. In at least two specific places in the universe, the math of general relativity simply breaks down, failing to produce reliable results: in the centers of black holes and at the beginning of the universe. These regions are called "singularities," which are spots in space-time where our current laws of physics crumble, and they are mathematical warning signs that the theory of general relativity is tripping over itself. Within both of these singularities, gravity becomes incredibly strong at very tiny length scales.

As such, to solve the mysteries of the singularities, physicists need a microscopic description of strong gravity, also called a quantum theory of gravity. There are lots of contenders out there, including string theory and loop quantum gravity.

And there's another approach that completely rewrites our understanding of space and time.

Causal set theory

In all current theories of physics, space and time are continuous. They form a smooth fabric that underlies all of reality. In such a continuous space-time, two points can be as close to each other in space as possible, and two events can occur as close in time to each other as possible.
"Reality has so many things that most people would associate with sci-fi or even fantasy." - Bruno Bento
But another approach, called causal set theory, reimagines space-time as a series of discrete chunks, or space-time "atoms." This theory would place strict limits on how close events can be in space and time, since they can't be any closer than the size of the "atom."

For instance, if you're looking at your screen reading this, everything seems smooth and continuous. But if you were to look at the same screen through a magnifying glass, you might see the pixels that divide up the space, and you'd find that it's impossible to bring two images on your screen closer than a single pixel.

This theory of physics excited Bento. "I was thrilled to find this theory, which not only tries to go as fundamental as possible — being an approach to quantum gravity and actually rethinking the notion of space-time itself — but which also gives a central role to time and what it physically means for time to pass, how physical your past really is and whether the future exists already or not," Bento told Live Science.


Space-time is made up of discrete chunks or space-time "atoms," similar to the pixels of a computer image. (Image credit: oxygen/Getty Images)

Beginning of time

Causal set theory has important implications for the nature of time. 

"A huge part of the causal set philosophy is that the passage of time is something physical, that it should not be attributed to some emergent sort of illusion or to something that happens inside our brains that makes us think time passes; this passing is, in itself, a manifestation of the physical theory," Bento said. "So, in causal set theory, a causal set will grow one 'atom' at a time and get bigger and bigger."

The causal set approach neatly removes the problem of the Big Bang singularity because, in the theory, singularities can't exist. It's impossible for matter to compress down to infinitely tiny points — they can get no smaller than the size of a space-time atom. 

So without a Big Bang singularity, what does the beginning of our universe look like? That's where Bento and his collaborator, Stav Zalel, a graduate student at Imperial College London, picked up the thread, exploring what causal set theory has to say about the initial moments of the universe. Their work appears in a paper published Sept. 24 to the preprint database arXiv. (The paper has yet to be published in a peer-reviewed scientific journal.) 

The paper examined "whether a beginning must exist in the causal set approach," Bento said. "In the original causal set formulation and dynamics, classically speaking, a causal set grows from nothing into the universe we see today. In our work instead, there would be no Big Bang as a beginning, as the causal set would be infinite to the past, and so there's always something before."

Their work implies that the universe may have had no beginning — that it has simply always existed. What we perceive as the Big Bang may have been just a particular moment in the evolution of this always-existing causal set, not a true beginning.

There's still a lot of work to be done, however. It's not clear yet if this no-beginning causal approach can allow for physical theories that we can work with to describe the complex evolution of the universe during the Big Bang.

"One can still ask whether this [causal set approach] can be interpreted in a 'reasonable' way, or what such dynamics physically means in a broader sense, but we showed that a framework is indeed possible," Bento said. "So at least mathematically, this can be done."

In other words, it's … a beginning.

Originally published on Live Science.



Paul Sutter, Astrophysicist

Paul M. Sutter is a research professor in astrophysics at the Institute for Advanced Computational Science at Stony Brook University and the Flatiron Institute in New York City. He is also the host of several shows, such as "How the Universe Works" on Science Channel, "Space Out" on Discovery, and his hit "Ask a Spaceman" podcast. He is the author of two books, "Your Place in the Universe" and "How to Die in Space," as well as a regular contributor to Space.com, LiveScience, and more. Paul received his PhD in Physics from the University of Illinois at Urbana-Champaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy, 



Tuesday, October 19, 2021

Unanswered Questions of the Big Bang

 


With the exception of the first four videos - two for fun and two re Time and General Relativity the remaining videos are not arranged in any order except how you, the viewer, chose to view them.

As always, my interest in the process-underpinnings of our cosmology necessitates first knowing about the universe we live in so that it may better inform the processes which live everywhere around us. For newbies, I'm referring to Alfred North Whitehead's process philosophy and theology.

R.E. Slater
October 19, 2021
REFERENCES






* * * * * * * *




BBC - How Big is Our Universe
November 11, 2021

How big is the universe ... compared with a grain of sand? 'You'll never get your head around how big the universe is,' warns astronomer Pete Edwards of the University of Durham in this film about measuring astronomical distances. 'There are as many stars in the universe as there are grains of sand on the Earth.' So how far is a light year? And supposing our galaxy were the size of a grain of sand, how big would the universe be?





What Triggered the Big Bang? | How the Universe Works
Mar 7, 2020

Science Channel

The Big Bang is one of science's most famous theories, but we now know it wasn't big and it wasn't a bang.

Stream Full Episodes of How the Universe Works:




Brian Greene Hosts: Reality Since Einstein
Jul 23, 2015

World Science Festival

In celebration of the 100th anniversary of Einstein's general theory of relativity, leaders from multiple fields of physics discuss its essential insights, its lingering questions, the latest work it has sparked, and the allied fields of research that have resulted.




Time Since Einstein
496,737 viewsSep 11, 2014

World Science Festival

Albert Einstein shattered previous ideas about time, but left many pivotal questions unanswered: Does time have a beginning? An end? Why does it move in only one direction? Is it real, or something our minds impose on reality? Journalist John Hockenberry leads a distinguished panel, including renowned physicist Sir Roger Penrose and prominent philosopher David Albert, as they explore the nature of time.

Quantum Fields:
The Real Building Blocks of the Universe - with David Tong
Feb 15, 2017

The Royal Institution

According to our best theories of physics, the fundamental building blocks of matter are not particles, but continuous fluid-like substances known as 'quantum fields'. David Tong explains what we know about these fields, and how they fit into our understanding of the Universe.

The Matter Of Antimatter:
Answering The Cosmic Riddle Of Existence
Jun 6, 2018

World Science Festival

You exist. You shouldn’t. Stars and galaxies and planets exist. They shouldn’t. The nascent universe contained equal parts matter and antimatter that should have instantly obliterated each other, turning the Big Bang into the Big Fizzle. And yet, here we are: flesh, blood, stars, moons, sky. Why? Come join us as we dive deep down the rabbit hole of solving the mystery of the missing antimatter.

A Thin Sheet of Reality: The Universe as a Hologram
Dec 29, 2014

World Science Festival

What we touch. What we smell. What we feel. They’re all part of our reality. But what if life as we know it reflects only one side of the full story? Some of the world’s leading physicists think that this may be the case. They believe that our reality is a projection—sort of like a hologram—of laws and processes that exist on a thin surface surrounding us at the edge of the universe. Although the notion seems outlandish, it’s a long-standing theory that initially emerged years ago from scientists studying black holes; recently, a breakthrough in string theory propelled the idea into the mainstream of physics. What took place was an intriguing discussion on the cutting-edge results that may just change the way we view reality.




The Limits of Understanding
Dec 14, 2014

World Science Festival

This statement is false. Think about it, and it makes your head hurt. If it’s true, it’s false. If it’s false, it’s true. In 1931, Austrian logician Kurt Gödel shocked the worlds of mathematics and philosophy by establishing that such statements are far more than a quirky turn of language: he showed that there are mathematical truths which simply can’t be proven. In the decades since, thinkers have taken the brilliant Gödel’s result in a variety of directions–linking it to limits of human comprehension and the quest to recreate human thinking on a computer. This program explores Gödel’s discovery and examines the wider implications of his revolutionary finding. Participants include mathematician Gregory Chaitin, author Rebecca Goldstein, astrophysicist Mario Livio and artificial intelligence expert Marvin Minsky.


* * * * * * * *




PHILOSOPHY / PHILOSOPHY OF SCIENCE / THOUGHT OF THE DAY

Whitehead’s Anti-Substantivilism, or
Process & Reality as a Cosmology to-be.
Thought-of-the-Day 39.0

JUNE 13, 2017 ALT-EXPLOIT


Treating “stuff” as some kind of metaphysical primitive is mere substantivilism – and fundamentally question-begging. One has replaced an extra-theoretic referent of the wave-function (unless one defers to some quasi-literalist reading of the nature of the stochastic amplitude function ζ[X(t)] as somehow characterizing something akin to being a “density of stuff”, and moreover the logic and probability (Born Rules) must ultimately be obtained from experimentally obtained scattering amplitudes) with something at least as equally mystifying, as the argument against decoherence goes on to show:

In other words, you have a state vector which gives rise to an outcome of a measurement and you cannot understand why this is so according to your theory.

As a response to Platonism, one can likewise read Process and Reality as essentially anti-substantivilist.

Consider, for instance:

Those elements of our experience which stand out clearly and distinctly [giving rise to our substantial intuitions] in our consciousness are not its basic facts, [but] they are . . . late derivatives in the concrescence of an experiencing subject. . . .Neglect of this law [implies that] . . . [e]xperience has been explained in a thoroughly topsy-turvy fashion, the wrong end first (161).
To function as an object is to be a determinant of the definiteness of an actual occurrence [occasion] (243).

The phenomenological ontology offered in Process and Reality is richly nuanced (including metaphysical primitives such as prehensions, occasions, and their respectively derivative notions such as causal efficacy, presentational immediacy, nexus, etc.). None of these suggest metaphysical notions of substance (i.e., independently existing subjects) as a primitive. The case can perhaps be made concerning the discussion of eternal objects, but such notions as discussed vis-à-vis the process of concrescence are obviously not metaphysically primitive notions. Certainly these metaphysical primitives conform in a more nuanced and articulated manner to aspects of process ontology. “Embedding” – as the notion of emergence is a crucial constituent in the information-theoretic, quantum-topological, and geometric accounts. Moreover, concerning the issue of relativistic covariance, it is to be regarded that Process and Reality is really a sketch of a cosmology-to-be . . . [in the spirit of ] Kant [who] built on the obsolete ideas of space, time, and matter of Euclid and Newton. Whitehead set out to suggest what a philosophical cosmology might be that builds beyond Newton [ala quantum physics].



Amazon Link

One of the major philosophical texts of the 20th century, Process and Reality is based on Alfred North Whitehead’s influential lectures that he delivered at the University of Edinburgh in the 1920s on process philosophy.

Whitehead’s master work in philsophy, Process and Reality propounds a system of speculative philosophy, known as process philosophy, in which the various elements of reality [are interwoven] into a consistent relation to each other. It is also an exploration of some of the preeminent thinkers of the seventeenth and eighteenth centuries, such as Descartes, Newton, Locke, and Kant.

The ultimate edition of Whitehead’s magnum opus, Process and Reality is a standard reference for scholars of all backgrounds.


Monday, October 18, 2021

Timeline of the Universe AFTER the Big Bang




Hi,

I have put these videos in an order where each will build on the next. However, the most vital video is this first one which speaks to the quantum beginnings of the universe. I consider its content the most important so that when viewing the remaining videos the viewer may understand why something is occurring and/or what is missing in the other presentations. It's short, but filled with important information. Once grasped, it will give the viewer a "grand quantum perspective" of the universe's origins.

Secondly, I'm interested in looking at the cosmos through the lens of Process Philosophy and Theology, ala Alfred North Whitehead. This approach to the postmodern sciences undergirds everything we currently know - and will know - in the foreseeable future. Yes, a bold claim, but the more I get to know about our Process-based cosmos the more I am amazed at its practicality and helpfulness.

Process forms and theory can be found everywhere - from process-evolution, process-based quantum physics, quantum computing, quantum biology, socio-economic constructions, history, literature, religion, even language, psychology, sociology, and ecodynamics. This is why process philosophy is considered a meta- or mega- Integral Theory by which I mean, all else may easily reside as incomplete parts and pieces to the metaphysical and cosmological whole. As such, it has effectively replaced the long lived Platonism of the ages. To know more about process philosophy search the topic index for the several process-related indices on the right side of this website, Relevancy22.

In sum, it cannot do to speak process without understanding how creation operates in a process fashion. The mathematician cum philosopher, Whitehead, a contemporary and fellow academy member with theoretical physicist Albert Einstein, would not have it any other way.

R.E. Slater
October 18, 2021





Origins of the Universe 101 | National Geographic
Mar 1, 2018


National Geographic
How old is the universe, and how did it begin? Throughout history, countless myths and scientific theories have tried to explain the universe's origins. The most widely accepted explanation is the big bang theory. Learn about the explosion that started it all and how the universe grew from the size of an atom to encompass everything in existence today.






TIMELAPSE OF THE ENTIRE UNIVERSE
Mar 9, 2018


melodysheep
Support me on Patreon: https://www.patreon.com/melodysheep On a cosmic time scale, human history is as brief as the blink of an eye. By compressing all 13.8 billion years of time into a 10 minute scale, this video shows just how young we truly are, and just how ancient and vast our universe is. Starting with the big bang and culminating in the appearance of homo sapiens, this experience follows the unfolding of time at 22 million years per second, adhering closely to current scientific understanding.

Narration by Brian Cox, Carl Sagan, and David Attenborough.





The Beginning of Everything -- The Big Bang
Mar 3, 2014


Kurzgesagt – In a Nutshell
How did everything get started?
Has the universe a beginning or was it here since forever? Well, evidence suggests that there was indeed a starting point to this universe we are part of right now. But how can this be? How can something come from nothing? And what about time? We don't have all the answers yet so let's talk about what we know.





Explaining The Big Bang One TRILLIONTH Of A Second At A Time
Episode 4 of 5
Apr 21, 2016


The universe is everything we can see and as far as we can see. For years we've been trying to figure out how it all began, but have we finally figured out how everything came to be?





Timeline of Universe (Big Bang to Today)
[a recap of the above... get your notebooks out to take down the dates times]
Oct 2, 2017


Astrogeekz
The Big Bang Theory is one of the most accepted theories that can explain the formation of the Universe. 

You, me, our planet and this entire Universe have evolved from a singularity.

Watch this video to get a brief idea about the past and the beginning of our expanding Universe.





The Early Universe Explained by Neil deGrasse Tyson
Jun 26, 2021


Science Time
Neil deGrasse Tyson explains the early state of our Universe. At the beginning of the universe, ordinary space and time developed out of a primeval state, where all matter and energy of the entire visible universe was contained in a hot, dense point called a gravitational singularity. A billionth the size of a nuclear particle. 

While we can not imagine the entirety of the visible universe being a billion times smaller than a nuclear particle, that shouldn't deter us from wondering about the early state of our universe. However, dealing with such extreme scales is immensely counter-intuitive and our evolved brains and senses have no capacity to grasp the depths of reality in the beginning of cosmic time. Therefore, scientists develop mathematical frameworks to describe the early universe.

Neil deGrasse Tyson also mentions that our senses are not necessarily the best tools to use in science when uncovering the mysteries of the Universe.

It is interesting to note that in the early Universe, high densities and heterogeneous conditions could have led sufficiently dense regions to undergo gravitational collapse, forming black holes. These types of Primordial black holes are hypothesized to have formed soon after the Big Bang. Going from one mystery to the next, some evidence suggests a possible Link Between Primordial Black Holes and Dark Matter.

In modern physics, antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts -- protons, neutrons and electrons -- but the opposite charges and magnetic properties.

A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons, gamma rays and neutrinos. The majority of the total energy of annihilation emerges in the form of ionizing radiation. If surrounding matter is present, the energy content of this radiation will be absorbed and converted into other forms of energy, such as heat or light. The amount of energy released is usually proportional to the total mass of the collided matter and antimatter, in accordance with Einstein's mass–energy equivalence equation.

Antimatter particles bind with each other to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an anti-hydrogen atom.

While these cosmic quandaries keep astrophysicists up at night, we are more than grateful to be alive in a time where we can even begin to contemplate the mysteries of the universe and our place in it.



click here to enlarge



The Entire History of the Universe in 8 Minutes
[How stars, galaxies, and the solar system began]
Oct 26, 2020

How did the Universe begin? When the Big Bang occurred, for some time, there was nothing but very hot matter flying in all directions at the speed of light. Very shortly, though, the first star appeared. Its name was Methuselah, and for a long time, it confused astronomers who believed it might be older than the Universe itself.

Soon after, on a cosmic scale, of course, the first black holes started forming. Scientists believe they’re what’s left of exploded stars, but that’s not for sure even today. At the same time, cosmic dust and matter began ionizing, helping to form new stars. In the end, it led to thousands and then millions of stars appearing in space. The Universe, left cold after the initial enormous explosion, started heating up again. But how did galaxies form? How were stars born? And why is the Universe still expanding?



click here to enlarge



TIMELAPSE OF THE FUTURE: A Journey to the End of Time (4K)
Mar 20, 2019


Support my work on Patreon: https://www.patreon.com/melodysheep  |  Get the soundtrack: https://bit.ly/2HKl9fi  |   How's it all gonna end?  This experience takes us on a journey to the end of time, trillions of years into the future, to discover what the fate of our planet and our universe may ultimately be. 

We start in 2019 and travel exponentially through time, witnessing the future of Earth, the death of the sun, the end of all stars, proton decay, zombie galaxies, possible future civilizations, exploding black holes, the effects of dark energy, alternate universes, the final fate of the cosmos - to name a few.

This is a picture of the future as painted by modern science - a picture that will surely evolve over time as we dig for more clues to how our story will unfold. Much of the science is very recent - and new puzzle pieces are still waiting to be found.

To me, this overhead view of time gives a profound perspective - that we are living inside the hot flash of the Big Bang, the perfect moment to soak in the sights and sounds of a universe in its glory days, before it all fades away.  Although the end will eventually come, we have a practical infinity of time to play with if we play our cards right. The future may look bleak, but we have enormous potential as a species. 

Featuring the voices of David Attenborough, Craig Childs, Brian Cox, Neil deGrasse Tyson, Michelle Thaller, Lawrence Krauss, Michio Kaku, Mike Rowe, Phil Plait, Janna Levin, Stephen Hawking, Sean Carroll, Alex Filippenko, and Martin Rees.






What Was The Universe Like IMMEDIATELY After The Big Bang?
[The Science behind the Big Bang]
Apr 30, 2021




click here to enlarge