Quotes & Sayings


We, and creation itself, actualize the possibilities of the God who sustains the world, towards becoming in the world in a fuller, more deeper way. - R.E. Slater

There is urgency in coming to see the world as a web of interrelated processes of which we are integral parts, so that all of our choices and actions have [consequential effects upon] the world around us. - Process Metaphysician Alfred North Whitehead

Kurt Gödel's Incompleteness Theorem says (i) all closed systems are unprovable within themselves and, that (ii) all open systems are rightly understood as incomplete. - R.E. Slater

The most true thing about you is what God has said to you in Christ, "You are My Beloved." - Tripp Fuller

The God among us is the God who refuses to be God without us, so great is God's Love. - Tripp Fuller

According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for this world to recreate, reclaim, redeem, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater

Our eschatological ethos is to love. To stand with those who are oppressed. To stand against those who are oppressing. It is that simple. Love is our only calling and Christian Hope. - R.E. Slater

Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger

Exploring the edge of life and faith in a post-everything world. - Todd Littleton

I don't need another reason to believe, your love is all around for me to see. – Anon

Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII

Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut

Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest

We become who we are by what we believe and can justify. - R.E. Slater

People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. – Anon

Certainly, God's love has made fools of us all. - R.E. Slater

An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater

Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann

Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument. There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is irreducibly subject and never made as an object, a force, a power, or a principle that can be manipulated. - Emil Brunner

“Ehyeh Asher Ehyeh” means "I will be that who I have yet to become." - God (Ex 3.14) or, conversely, “I AM who I AM Becoming.”

Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton

The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table to share life with one another as a new kind of family. When this happens, we show to the world what love, justice, peace, reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. – Anon

The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul

The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah

If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer

God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power is made perfect in weakness; and His grace is sufficient for all. – Anon

Our little [biblical] systems have their day; they have their day and cease to be. They are but broken lights of Thee, and Thou, O God art more than they. - Alfred Lord Tennyson

We can’t control God; God is uncontrollable. God can’t control us; God’s love is uncontrolling! - Thomas Jay Oord

Life in perspective but always in process... as we are relational beings in process to one another, so life events are in process in relation to each event... as God is to Self, is to world, is to us... like Father, like sons and daughters, like events... life in process yet always in perspective. - R.E. Slater

To promote societal transition to sustainable ways of living and a global society founded on a shared ethical framework which includes respect and care for the community of life, ecological integrity, universal human rights, respect for diversity, economic justice, democracy, and a culture of peace. - The Earth Charter Mission Statement

Christian humanism is the belief that human freedom, individual conscience, and unencumbered rational inquiry are compatible with the practice of Christianity or even intrinsic in its doctrine. It represents a philosophical union of Christian faith and classical humanist principles. - Scott Postma

It is never wise to have a self-appointed religious institution determine a nation's moral code. The opportunities for moral compromise and failure are high; the moral codes and creeds assuredly racist, discriminatory, or subjectively and religiously defined; and the pronouncement of inhumanitarian political objectives quite predictable. - R.E. Slater

God's love must both center and define the Christian faith and all religious or human faiths seeking human and ecological balance in worlds of subtraction, harm, tragedy, and evil. - R.E. Slater

In Whitehead’s process ontology, we can think of the experiential ground of reality as an eternal pulse whereby what is objectively public in one moment becomes subjectively prehended in the next, and whereby the subject that emerges from its feelings then perishes into public expression as an object (or “superject”) aiming for novelty. There is a rhythm of Being between object and subject, not an ontological division. This rhythm powers the creative growth of the universe from one occasion of experience to the next. This is the Whiteheadian mantra: “The many become one and are increased by one.” - Matthew Segall

Without Love there is no Truth. And True Truth is always Loving. There is no dichotomy between these terms but only seamless integration. This is the premier centering focus of a Processual Theology of Love. - R.E. Slater

-----

Note: Generally I do not respond to commentary. I may read the comments but wish to reserve my time to write (or write off the comments I read). Instead, I'd like to see our community help one another and in the helping encourage and exhort each of us towards Christian love in Christ Jesus our Lord and Savior. - re slater

Showing posts with label Science - Space and Astronomy. Show all posts
Showing posts with label Science - Space and Astronomy. Show all posts

Saturday, July 16, 2022

FOUND: Interstellar Pre-Biotic, Pre-RNA Molecular Clouds Residing Throughout the Milky Way



FOUND: An Interstellar Pre-Biotic, Pre-RNA Molecular
Cloud Residing Throughout the Milky Way

by R.E. Slater
July 15, 2022
 
[ARTICLE EXCERPTS]
The heart of the Milky Way is apparently a hotspot for molecules that combine to form RNA...
A new survey of the thick, molecular clouds that shroud the galactic center has revealed the presence of a wide range of nitriles – organic molecules that are often toxic in isolation, but also constitute the building blocks of molecules essential for life...
The increase in prebiotic molecules (molecules involved in the emergence of life) identified in the galactic center, particularly those associated with RNA, has implications for our understanding of how life emerges in the Universe – and how it did so here on Earth...
"Here we show that the chemistry that takes place in the interstellar medium is able to efficiently form multiple nitriles, which are key molecular precursors of the 'RNA World' scenario," explained astrobiologist Víctor Rivilla of the Spanish National Research Council and the National Institute of Aerospace Technology in Spain....



I wrote an article less than a year ago about the about all the things in common which humanity shares with the Earth. It came about because I was listening to the traditional interpretation of biblical anthropology I had grown up with as to how mankind is uniquely unique to all of creation. Which, in one sense it is. And yet, in another sense it isn't. From a praying mantis' view of itself it can claim the same thing about its uniqueness which man cannot, but the poor thing can't write and so cannot place an addendum into the Genesis record of being made in God's image (sad face :/).

Typically then this very common viewpoint claims man is the epicenter of God's creativity so much so that we were given dominion over all of it and is backed up by the Genesis statement in 1:26-28.

As things go, it strokes the egos of Christians and separates us from the mindsets of the Native American Indians and Asian Buddhist communities (among others) which see mankind as part of the warp-and-woof of creation. That is, as part of the essential foundation of creation not as its center point or even the full meaning of creation.

Rather, mankind is a product of its environment... which from an evolutionary point of view is absolutely true. Man is no more, nor no less, from the Earth's resident potentialities. That is, man is pretty much the same as everything else. We come from the Earth and will return to the Earth.

And lest we forget, all creation is filled with God’s Imago Dei, not just man. This would be one of Process Theology’s fundamental cornerstones. It’s why process theology may be described as a process relational theology.

It emphasizes man’s relationship with all of creation even as creation is in relationship to itself, evolving, communicating, networking, “speaking” its language of relationality, of community, of affectation good and bad of panexperientialism, panrelationalism, and panpsychism. This is but one of the aspects of process theology (and philosophy) which marks it as uniquely different from the yesteryear world of mechanism, individualism, substance thinking, and so on.

By the sweat of your face you shall eat bread, till you return to the ground, for out of it you were taken; for you are dust, and to dust you shall return.”

All go to one place. All are from the dust, and to dust all return.

And the dust returns to the earth as it was, and the spirit returns to God who gave it.

All the valiant men arose and went all night and took the body of Saul and the bodies of his sons from the wall of Beth-shan, and they came to Jabesh and burned them there.

“For God so loved the world, that he gave his only Son, that whoever believes in him should not perish but have eternal life.

For if that first covenant had been faultless, there would have been no occasion to look for a second.

He presented himself alive to them after his suffering by many proofs, appearing to them during forty days and speaking about the kingdom of God.

And Joshua said, “Why did you bring trouble on us? The Lord brings trouble on you today.” And all Israel stoned him with stones. They burned them with fire and stoned them with stones.

The word of the Lord came to me: “What do you mean by repeating this proverb concerning the land of Israel, ‘The fathers have eaten sour grapes, and the children's teeth are set on edge’? As I live, declares the Lord God, this proverb shall no more be used by you in Israel. Behold, all souls are mine; the soul of the father as well as the soul of the son is mine: the soul who sins shall die. “If a man is righteous and does what is just and right...

Final thought, and the reason this post was created…

I find the discovery of interstellar molecular clouds astounding! To find pre-biotic, pre-RNA molecular clouds lying everywhere throughout the Milky Way goes beyond the imagination in explaining the origins of life. Though why we hadn’t imagined the universe’s RNA potentiality until now is truly a paradox. Especially as it’s clues lied everywhere around us – in plants, animals, bugs, the worlds of the small, and within our own bodily composition. But it took astrochemists to discover this wonderment beyond the mere Earth-centric evolutionists in all of us. Amazing!

Thus and thus, if there is no organic mix than there is no life. We claim to be born of star dust but it that molecular mixture cannot produce pre-RNA than these are but idle, poetic statements.

But if such initial conditions are present in our galactic universe than we should expect RNA-based organic lifeforms everywhere throughout the Milky Way's galactic regions. Consequently, these prebiotic organic molecular compounds seeded earth for life.

Which is another way of saying that when studying earth we are studying our galactic origins and may expect to find RNA based lifeforms throughout the galaxy of the Milky Way... If not beyond our galaxy and throughout the universe itself… assuming such preorganic molecular clouds are not unique to the Milky Way alone, but were a distribution of life from the Big Bang's very beginning – it’s chaotic birth of life into life.

R.E. Slater
July 16, 2022












Despite the generally hostile nature of the environments involved, chemistry does occur in space. Molecules are seen in environments that span a wide range of physical and chemical conditions and that clearly were created by a multitude of chemical processes, many of which differ substantially from those associated with traditional equilibrium chemistry.
The wide range of environmental conditions and processes involved with chemistry in space yields complex populations of materials, and because the elements H, C, O, and N are among the most abundant in the universe, many of these are organic in nature, including some of direct astrobiological interest.
Much of this chemistry occurs in “dense” interstellar clouds and protostellar disks surrounding forming stars because these environments have higher relative densities and more benign radiation fields than in stellar ejectae or the diffuse interstellar medium. Because these are the environments in which new planetary systems form, some of the chemical species made in these environments are expected to be delivered to the surfaces of planets where they can potentially play key roles in the origin of life.
Because these chemical processes are universal and should occur in these environments wherever they are found, this implies that some of the starting materials for life are likely to be widely distributed throughout the universe.





* * * * * * *

ORIGINAL RESEARCH article Front. Astron. Space Sci., 08 July 2022

Sec.Astrochemistry



View all 13 Articles - RNA World Hypothesis and the Origin of Life: Astrochemistry Perspective

Molecular Precursors of the RNA-World in Space: New Nitriles in the G+0.693−0.027 Molecular Cloud


The galactic center, imaged in infared. (NASA/JPL-Caltech/S. Stolovy, Spitzer Science Center/Caltech)


Loads of Precursors For RNA Have Been
Detected in The Center of Our Galaxy

July 8, 2022


The heart of the Milky Way is apparently a hotspot for molecules that combine to form RNA.

A new survey of the thick, molecular clouds that shroud the galactic center has revealed the presence of a wide range of nitriles – organic molecules that are often toxic in isolation, but also constitute the building blocks of molecules essential for life.

The increase in prebiotic molecules (molecules involved in the emergence of life) identified in the galactic center, particularly those associated with RNA, has implications for our understanding of how life emerges in the Universe – and how it did so here on Earth.

"Here we show that the chemistry that takes place in the interstellar medium is able to efficiently form multiple nitriles, which are key molecular precursors of the 'RNA World' scenario," explained astrobiologist Víctor Rivilla of the Spanish National Research Council and the National Institute of Aerospace Technology in Spain.

Precisely how life emerged on Earth is a mystery whose bottom scientists are extremely keen to reach. That information will yield important clues to discovering exoplanets likely to harbor living organisms.

One version is that RNA emerged first from the metaphorical ooze, self-replicating and diversifying all on its own; this is what's called the RNA World Hypothesis.

We're not likely to ever get direct evidence from Earth, but we can put together more and more clues to figure out how plausible and likely this scenario is. One of the questions raised by this hypothesis is about the source of RNA prebiotic molecules such as nitriles. Were they here on Earth from the start, or could they have been carried in from space on meteorites and asteroids?

We know the inner Solar System, including Earth, was subject to a period of intense asteroid bombardment very early in its history. We've also found prebiotic molecules on meteors, comets, and asteroids hanging around the Solar System today. And where do meteors, comets and asteroids get them [as they fly through the galaxy]?

Well, probably the clouds they were born in: cold molecular clouds that give birth to stars. Once a star finishes forming from a section of cloud, the cloud leftovers go on to form everything else in a planetary system – planets, comets, asteroids, dwarf planets, and whatever else might be lurking about.

The Solar System's birth cloud is long gone, but the center of the galaxy is thick with molecular clouds. It's called the Central Molecular Zone, and scientists have found a bunch of prebiotic molecules hanging around there.

One particular cloud, named G+0.693-0.027, is especially interesting. There's no evidence of star formation there yet, but scientists believe that a star or stars will form there in the future.

"The chemical content of G+0.693-0.027 is similar to those of other star-forming regions in our galaxy, and also to that of Solar System objects like comets," Rivilla said.

"This means that its study can give us important insights about the chemical ingredients that were available in the nebula that give rise to our planetary system."

The researchers used two telescopes to study the spectrum of light coming from the cloud. When certain elements or molecules absorb and re-emit light, this can be seen on the spectrum as a darker or lighter line. Interpreting these absorption and emission lines can be tricky, but it can also be used to identify which molecules are present: each one has its own spectral signature.

By carefully studying and analyzing emission features from G+0.693-0.027, Rivilla and his colleagues identified a range of nitriles, including cyanic acid, cyanoallene, propargyl cyanide, and cyanopropyne. They also made tentative detections of cyanoformaldehyde, and glycolonitrile.

Previous observations of G+0.693-0.027 revealed the presence of cyanoformaldehyde, and glycolonitrile. This suggests that nitriles are among the most abundant chemical families in the Milky Way, and that the most basic building blocks for RNA can be found in the clouds that give birth to stars and planets.

But there is – of course, as there always is – more work to be done.

"We have detected so far several simple precursors of ribonucleotides, the building blocks of RNA," explained astrobiologist Izaskun Jiménez-Serra, also of the Spanish National Research Council and the National Institute of Aerospace Technology.
"But there are still key missing molecules that are hard to detect. For example, we know that the origin of life on Earth probably also required other molecules such as lipids, responsible for the formation of the first cells. Therefore we should also focus on understanding how lipids could be formed from simpler precursors available in the interstellar medium."

The research has been published in Frontiers in Astronomy and Space Sciences.



* * * * * * *




Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.

It’s What’s on the Inside…of a Galaxy

As it turns out, stars make very little of the mass of a galaxy, which end up being mainly unbonded gas and dust in a baryonic sense, for the rest is the mysterious dark matter. Stars that are born do interact with these regions in different ways, mainly depending on the size of the star and the density of material around it. But in general, the bigger the star then the more radiation it outputs into space. Ultraviolet  [radiation] is amongst the largest energy output photons that big stars release, and are absorbed by the gas surrounding it (Shields 9-10).

This causes electrons to be released and so it has become ionized. We call these regions H II, namely for the double spectral lines of hydrogen that are characteristic of them. Because of the ionizing effect, other wavelengths are released in the visible, radio, and IR along with the UV from the stars themselves and so we can also call these objects emission nebula (Ibid).

By looking at the spectral lines of these H II regions we can gather information on the temperature of the region as well as the density of each element that is present. We are interested in seeing the chemical evolution of the Universe, and these regions can assist with that. It all goes back to when the Universe was 1 minute old. At that time, only loose protons, neutrons, and electrons were flying about and no atoms were possible. But a few minutes later, the Universe cooled to the point where nuclei could be formed, specifically lots of deuterium and helium (10).

Ironically, a few more minutes later the Universe was too cool to create anymore nuclei and so synthesis stopped at a roughly 100 hydrogen to 7 helium ratio. Most of this original helium still exists in the Universe to this day with hydrogen being the preferred starting route for star formation and the vast distances between space objects preserving many elements (Ibid).

The Orion Nebula, a fous H II region. | Sciences in the Mural of Life

Flash forward a few 100 million years after the Big Bang and we get some of the first galaxies cropping up. Under the appropriate density and gravimetric conditions, some of the gas inside the galaxies collapsed and you have stars forming. These are the sites of heavy element formation, and for most stars the end of the line is iron. It simply takes too much energy to fuse beyond that and so eventually a star can no longer support itself against gravity and a supernova occurs. These events can create even heavier elements than iron and release them to the Universe. Now, our gaseous regions have tons of contaminants that can become incorporated into new stars forming (15).

In fact, each new batch of stars should become dirtier and dirtier. But not all stars end in a supernova. In fact, smaller ones have a long lifespan and so we can use the small stars much like insects trapped in amber, preserving some clues as to the timeframe (and chemistry) of its host galaxy. We have a “partial recycling program” here, where some stars trap material and others create new ones. This means heavier elements should be on the rise and smaller ones on the decrease. This is known as the simple model of elemental history for galaxies (Ibid).

Using the simple model, we can get a feel for the age of a galaxy. If you have older stars with less heavy elements then the host galaxy is young while if many newer stars have many heavy elements in them that implies an older galaxy (basically, it’s all about the timeframe needed to produce the amount of heavy elements seen in the most recent generation of stars). Using spectroscopy, we can gather data about the chemical elements in the stars themselves (15-6).

Now, let’s go back to that helium from the formation of the Universe. We care so much about the helium because certain models call for certain amounts of the material to be present. Therefore, if we can get a feel for the amount that is out there we can eliminate some models of universal growth. This is where irregular galaxies come in handy. Because of their lumpiness and high-gas concentration, not as many stars have formed there. These galaxies could be time capsules for how much stars make helium in the universe and so we can remove that amount from what is present and estimate the original values (16).

The Space Between Us and Them

Unlike the relatively dense conditions of a galaxy, the average density of the interstellar space (or the spans between stars) is about 1-2 atoms per cubic centimeter. On Earth, the best vacuum achievable is 1 million times denser than that, so it may seem space is pretty empty. But, if you rather all that nearly emptiness together and it’s not so insignificant anymore. And some places are denser than other, creating beautiful clouds of debris that are dispersed throughout space. If such a cloud of material happens to be around a star, it’s very easy to spot as radiation impacts it, generating many H II or ionized regions (Marschall 9-10).

H I regions, also known as reflection nebula, “are composed predominately of electrically neutral hydrogen atoms and molecules,” tend to be dark as well as cold and not very luminous. This makes spotting them challenging but not impossible. If you look at a patch of stars and notice an unusually empty space, its likely one of these H I regions blocking out the stars behind it. The dust in these clouds would be needed in great quantities to absorb the solar rays and also to preserve the fragile molecules contained in them (Ibid).

Interestingly, about 7% of interstellar clouds are H I regions and another 7% are H II regions, making the rest invisible to us…usually. It depends on what part of the spectrum you are looking at, and visible light isn’t the only piece of data we have. We can look at IR, UV, radio, gamma, and so on for further clues. The big key here is to look for absorption spectrums, a result of col gas being hit by hot rays and absorbing some of their spectrum. But the immediate conditions around a star can also absorb photons, so how can we tell what’s absorbing what? What’s local interference from the star and what’s the interstellar medium’s clouds? (10).

Well, overall the absorption lines from interstellar material “are generally weaker, narrower, and sharper” than those from stellar lines. Also, temperatures around a star are anywhere from 2,500 K to 30,000 K while the interstellar medium cloud averages about 100 K, so different portions of the spectrum will be impacted (Ibid).

IRAS 05437+2502, a little known reflection nebula. | Pinterest

These spectral clues were how scientists spotted some surprising molecules in space. In April 2019, Rolf Gusten (Max Planck Institute for Radio Astronomy in Germany) and team used data from the Stratospheric Observatory for Infrared Astronomy to spot helium hydride, one of the first molecules created in the universe, in NGC 7027. The telescope that collected the data flew above the water vapor in our atmosphere, allowing infrared clues to be collected, specifically at the wavelength of 149 micrometers. This helium hydride wasn’t created from the early universe but when a red giant star cast off its outer layers, resulting in high energy UV rays stripping helium of an electron and making it conducive to bonding with neutral hydrogen (Croswell).

Another molecular find was argonium, or an argon and hydrogen. Peter Schilke (University of Cologne in Germany) and David Neufeld (John Hopkins University) used data from the Herschell Space Observatory, which uses liquid helium to cool the craft and thus make extreme infrared readings possible, to spot the molecule at a wavelength of about 240 microns. It was created in the remains of the Crab Nebula when a cosmic ray removes an electron from argon which then can take a hydrogen from its natural H2 form due to the greater charge disparity. As it turns out, argonium can have its hydrogen ripped if enough H2 is present, so it’s a delicate balancing act and can in fact inform scientists as to what regions are more likely to spot potential new star factories, since hydrogen is the easiest material to fuse (Ibid).

But interestingly another clue to help us understand space material can tip us to what is what: Doppler shifts. If the thing that is absorbing photons is moving towards us, the spectrum becomes blue-shifted, but if it is moving away then it is red-shifted. In fact, Doppler shifts can reveal if many clouds are between us and a host star. And of course, spectrums can reveal chemical compositions, so knowing what is commonly in stars can help us determine cloud material. Hydrogen, helium carbon, nitrogen, and oxygen are frequently found in stars. This then reveals that clouds contain lots of calcium, sodium, potassium, and titanium (Marshall 10, 15).

Once you average out all the data we can collect on interstellar clouds, you find that they typically are 25 light years in size, have an average density of 1 to 10 atoms per cubic centimeter, and have an average mass of 100 Suns. But…averaging out the cloud properties is like trying to average out the properties of the planets. Commonalities exist, but much more specialized things do, too. Interstellar clouds can be as small as a few solar systems but can be as large as 100s of light years. Smaller clouds may be missed by stars and elude detection while large clouds can widely variable in their distribution and so be mistaken for several, smaller objects (15, 18).

Conflicting Data

With all of this in mind, astronomers can get a feel for Universal makeup and therefore behavior at different times of its life. Some data points to the simple model of elemental history for galaxies into question. One such issue with the simple model is known as the G-dwarf problem (of which our Sun happens to be a member of). These stars seems to have a lover heavy element count than the simple model predicts they should. It could be that gas from outside the galaxy falls into it, causing the ratios to be thrown off as more untainted material is present (Shields 16).

But an even bigger problem is the star production rate seen in the early Universe. All around us we see galactic clusters with elliptical galaxies, which are dead or dying in the stellar sense. In fact, these are what is left of the largest galaxies from the early Universe. If you look at their content and play things in reverse, then it points to clusters being firmly established in the Universe about half its current age ago (Long 28).

The progenitors of these clusters, aptly named protoclusters, have been spotted within the first 3 billion years of the Universe’s existence, and so have required recent developments in telescope technology to be able to resolve them, and we now think they grew quicker than our models allow for (Ibid).

What a protocluster may have looked like. | AAS Nova

Normally, an average galaxy with a lifespan of roughly 10 billion years makes 1-10 sun-like stars per year, depending on the interstellar medium and current age of the galaxy. A starburst galaxy is much busier, making 100s to 1000s of sun-like stars a year. Because of elemental resources, they usually hit their peak at 300 million years old, and eventually depleted material until becoming the elliptical of today (29-31).

But finding them in protoclusters was hard because of their high red star content and much hot interstellar gas blocking out light. You would have better luck spotting them in their starburst phase, but dust becomes an issue ironically from the high production of stars releasing heavy elements to their surroundings. Also, protoclusters were much more spread out than the clusters of today (for they were on their way to becoming the close companions they are now) (Ibid).

With the rise of new telescopes like ALMA, the Submillimeter Common User Bolometer Array, the Hershel Space Observatory, the South Pole Telescope, and the Spitzer Space Telescope, the required resolution was finally achievable. In 2018, ALMA looked at two different protoclusters: SPT12349-56 (14 galaxies) and the Distant Red Core (DRC) (10 galaxies), from different places in the Universe when it was 1.3 to 1.4 billion years old. These clusters showed tons of stars forming, at almost 10,000 times the rate of our galaxy! If this rate was sustained, then those early galaxies would have run out of fuel in only a few 100 million years and become elliptical - but way before they should have (31-2).

Science is all about adjusting the theories it produces, and galactic behavior will be no different. So stay tuned, for I am sure this field is only going to heat up….

Works Cited

Croswell, Ken. “Space is the Place for impossible molecules.” Astronomy.com. Kalmbach Publishing Co., 31 Mar. 2021. Web. 22 Jun. 2021.

Lng, Arianna S. “Too Big For The Universe.” Scientific American. Jan. 2021. Print. 28-33.

Marschall, Lawrence. “Secrets of Interstellar Clouds.” Astronomy Mar. 1982. Print. 9-10, 15, 18.

Shields, Gregory. “The Chemistry of Galaxies.” Astronomy June 1981. Print. 9-10, 16-7.

This content is accurate and true to the best of the author’s knowledge and is not meant to substitute for formal and individualized advice from a qualified professional.

@ 2022 Leonard Kelley


Thursday, June 23, 2022

Minding the Day of the Lord Which Has Come...



Minding the Day of the Lord
Which Has Come

by R.E. Slater
June 22, 2022

After reading through the science article below I thought it may be helpful to review what solar outages do, and do not, mean for the Christian faith. Too, it's a great solar science article speaking to solar magnetism and quantum mechanics. Enjoy. - res

Prolonged national grid failure will not be a sign of the Lord's Coming. Seemingly, I'm a preterist based on my decided embrace of Process Theology. A position which means Jesus is "here in our midst now" through his Church. A church which I will loosely define as "anyone who is sharing God's love with others, including in the service of restoring the earth's ruined habitats."

So, when Christians fervantly proclaim, "Lord Come," I will typically reply, "Lord, Become, in our midst." Meaning, we are to live and serve in the present in the fullness of Christ's atonement and resurrection whatever may come later. For now, we love and serve, minister and declare healing, hope, and forgiveness.

Nor will national outages signal the time of Armageddon, which is "End-of-the-World" stuff according to many Christian traditions. In stark contrast, process theology doesn't care about traditionalized prophetic prognostications as it views biblical prophecy as simply what I and others have been saying over the years in warnings, reproofs, and encouragement as we can.

That is, a prophet looks into our present context; weighs it against how it should be as a lived theology of love; determines its gross deficiencies; then speak to those failings.

Prophecy then is preaching in the present text of how to live love. Not proclaiming future events and describing God in wrath and judgment. This would be the opposite of a God of love. The prophets were moved deeply to speak to their community's lack of love to one another. It is this lack of loving to which they pointed to and said we can do better.

Similarly, today's prophets look at the church, its doctrines, its behaviors, and declare to unlistening, indifferent ears to repent and turn back to a God of love versus their God of Wrath.

They proclaim abomination upon all the wicked works of Christian men and women pursuing a deceiving socio-political religion of power and control commonly described as Church "Dominionism". This theology is also known as the Christian "Reconstruction" of society through decrees of sectarian dogmas to be  observed by all men.

And yet, the Church is not the State, is to be separate from the State, and is not to invoke sectarian "Jihadhism" upon the people of the State.

America is not a theocracy, not even a form of sectarian theocracy. It is a nation operating under its own civic Constitution granting equal and fair Civil Rights to  all Americans. A decree which seeks to embrace the masses of all differing colors, genders, sexes, races, creeds, or ethnicities within its nation-state. Pointed as an act of not and not simply by fiat. Which, in this regard, may lean into the church's own doctrines of love and charitable works (as versus religious legalisms, ascetisms, stoicisms, or infifference. All of which do not reflect a God, or a theology, of love).

Too, the eschatology of Process Christianity says heaven and Spirit have come in full force with Jesus' Advent (this is also the claim of church traditions). That the future is unknown, open, undetermined, and uncontrolled by our Creator God Redeemer. That we bear a deep obligation and duty to act in God's stead to "redeem" all whom we meet, influence, work with, and fellowship with... beginning with ourselves, then from people to nature.

The kind of future a Process Christian embraces is one of responsible living at all times in love. Not exclusion, nor warfare, nor civil injustice, not civil racism, nor even the suicide of nature.

And I'll go one further... if and when Armageddon-like events occur it will be bourne out not by God but by ourselves - the masses of humanity, including the church, for failure to love one another and for refusing to make each day better than the last.

"Thus saith the Lord."

by R.E. Slater
June 22, 2022




[Excerpt]
...A National Grid Failure will deeply disrupt our dependency on electrical grids, transformers, and anything electronic:

"McIntosh is already thinking ahead to the next thing—tools that can detect where a sunspot will emerge and how likely it is to burst. He yearns for a set of satellites orbiting the sun—a few at the poles and a few around the equator, like the ones used to forecast terrestrial weather. The price tag for such an early-­warning system would be modest, he argues: eight craft at roughly $30 million each. But will anyone fund it? “I think until Cycle 25 goes bananas,” he says, “nobody’s going to [care].”

"When the next solar storm approaches Earth and the deep-space satellite provides its warning—maybe an hour in advance, or maybe 15 minutes, if the storm is fast-moving—alarms will sound on crewed spacecraft. Astronauts will proceed to cramped modules lined with hydrogen-rich materials like polyethylene, which will prevent their DNA from being shredded by protons in the plasma. They may float inside for hours or days, depending on how long the storm endures.

"The plasma will begin to flood Earth’s ionosphere, and the electron bombardment will cause high-frequency radio to go dark. GPS signals, which are transmitted via radio waves, will fade with it. Cell phone reception zones will shrink; your location bubble on Google Maps will expand. As the atmosphere heats up, it will swell, and satellites will drag, veer off course, and risk collision with each other and space debris. Some will fall out of orbit entirely. Most new satellites are equipped to endure some solar radiation, but in a strong enough storm, even the fanciest circuit board can fry. When navigation and communication systems fail, the commercial airline fleet—about 10,000 planes in the sky at any given time—will attempt a simultaneous grounding. Pilots will eyeball themselves into a flight pattern while air traffic controllers use light signals to guide the planes in. Those living near military installations may see government aircraft scrambling overhead; when radar systems jam, nuclear defense protocols activate."


Illustration by Mark Pernice

Here Comes the Sun - to End Civilization

by Matt Ribel
June 21, 2022

Every so often, our star fires off a plasma bomb in a random direction. Our best hope the next time Earth is in the crosshairs? Capacitors.

TO A PHOTON, the sun is like a crowded nightclub. It’s 27 million degrees inside and packed with excited bodies—helium atoms fusing, nuclei colliding, positrons sneaking off with neutrinos. When the photon heads for the exit, the journey there will take, on average, 100,000 years. (There’s no quick way to jostle past 10 septillion dancers, even if you do move at the speed of light.) Once at the surface, the photon might set off solo into the night. Or, if it emerges in the wrong place at the wrong time, it might find itself stuck inside a coronal mass ejection, a mob of charged particles with the power to upend civilizations.

The cause of the ruckus is the sun’s magnetic field. Generated by the churning of particles in the core, it originates as a series of orderly north-to-south lines. But different latitudes on the molten star rotate at different rates—36 days at the poles, and only 25 days at the equator. Very quickly, those lines stretch and tangle, forming magnetic knots that can puncture the surface and trap matter beneath them. From afar, the resulting patches appear dark. They’re known as sunspots. Typically, the trapped matter cools, condenses into plasma clouds, and falls back to the surface in a fiery coronal rain. Sometimes, though, the knots untangle spontaneously, violently. The sunspot turns into the muzzle of a gun: Photons flare in every direction, and a slug of magnetized plasma fires outward like a bullet.

The sun has played this game of Russian roulette with the solar system for billions of years, sometimes shooting off several coronal mass ejections in a day. Most come nowhere near Earth. It would take centuries of human observation before someone could stare down the barrel while it happened. At 11:18 am on September 1, 1859, Richard Carrington, a 33-year-old brewery owner and amateur astronomer, was in his private observatory, sketching sunspots—an important but mundane act of record-keeping. That moment, the spots erupted into a blinding beam of light. Carrington sprinted off in search of a witness. When he returned, a minute later, the image had already gone back to normal. Carrington spent that afternoon trying to make sense of the aberration. Had his lens caught a stray reflection? Had an undiscovered comet or planet passed between his telescope and the star? While he stewed, a plasma bomb silently barreled toward Earth at several million miles per hour.

When a coronal mass ejection comes your way, what matters most is the bullet’s magnetic orientation. If it has the same polarity as Earth’s protective magnetic field, you’ve gotten lucky: The two will repel, like a pair of bar magnets placed north-to-north or south-to-south. But if the polarities oppose, they will smash together. That’s what happened on September 2, the day after Carrington saw the blinding beam.


Illustration by Mark Pernice


Electrical current raced through the sky over the western hemisphere. A typical bolt of lightning registers 30,000 amperes. This geomagnetic storm registered in the millions. As the clock struck midnight in New York City, the sky turned scarlet, shot through with plumes of yellow and orange. Fearful crowds gathered in the streets. Over the continental divide, a bright-white midnight aurora roused a group of Rocky Mountain laborers; they assumed morning had arrived and began to cook breakfast. In Washington, DC, sparks leaped from a telegraph operator’s forehead to his switchboard as his equipment suddenly magnetized. Vast sections of the nascent telegraph system overheated and shut down.

THE CARRINGTON EVENT, as it’s known today, is considered a once-in-a-century geomagnetic storm—but it took just six decades for another comparable blast to reach Earth. In May 1921, train-control arrays in the American Northeast and telephone stations in Sweden caught fire. In 1989, a moderate storm, just one-tenth the strength of the 1921 event, left Quebec in the dark for nine hours after overloading the regional grid. In each of these cases, the damage was directly proportional to humanity’s reliance on advanced technology—more grounded electronics, more risk.

When another big one heads our way, as it could at any time, existing imaging technology will offer one or two days’ notice. But we won’t understand the true threat level until the cloud reaches the Deep Space Climate Observatory, a satellite about a million miles from Earth. It has instruments that analyze the speed and polarity of incoming solar particles. If a cloud’s magnetic orientation is dangerous, this $340 million piece of equipment will buy humanity—with its 7.2 billion cell phones, 1.5 billion automobiles, and 28,000 commercial aircraft—at most one hour of warning before impact.


Illustration by Mark Pernice


ACTIVITY ON THE solar surface follows a cycle of roughly 11 years. At the beginning of each cycle, clusters of sunspots form at the middle latitudes of both solar hemispheres. These clusters grow and migrate toward the equator. Around the time they’re most active, known as solar maximum, the sun’s magnetic field flips polarity. The sunspots wane, and solar minimum comes. Then it happens all over again. “I don’t know why it took 160 years of cataloging data to realize that,” says Scott McIntosh, a blunt-speaking Scottish astrophysicist who serves as deputy director of the US National Center for Atmospheric Research. “It hits you right in the fucking face.”

Today, in the 25th solar cycle since regular record-­keeping began, scientists don’t have much to show beyond that migration pattern. They don’t fully understand why the poles flip. They cannot explain why some sunspot cycles are as short as nine years while others last 14. They cannot reliably predict how many sunspots will form or where coronal mass ejections will occur. What is clear is that a big one can happen in any kind of cycle: In the summer of 2012, during the historically quiet Cycle 24, two mammoth coronal mass ejections narrowly missed Earth. Still, a more active cycle increases the chances of that near miss becoming a direct hit.

When navigation and communication systems fail, the 10,000 or so commercial planes in the sky will attempt a simultaneous grounding. Pilots will eyeball themselves into a flight pattern while air traffic controllers use light signals to guide the planes in.

Without a guiding theory of solar dynamics, scientists tend to take a statistical approach, relying on strong correlations and after-the-fact rationales to make their predictions. One of the more influential models, which offers respectable predictive power, uses the magnetic strength of the sun’s polar regions as a proxy for the vigor of the following cycle. In 2019, a dozen scientists empaneled by NASA predicted that the current solar cycle will peak with 115 sunspots in July 2025—well below the historical average of 179.

McIntosh, who was not invited to join the NASA panel, calls this “made-up physics.” He believes the old-school models are concerned with the wrong thing—sunspots, rather than the processes that create them. “The magnetic cycle is what you should be trying to model, not the derivative of it,” he says. “You have to explain why sunspots magically appear at 30 degrees latitude.”

McIntosh’s attempt to do that goes back to 2002, when, at the behest of a postdoctoral mentor, he began plotting tiny ultraviolet concentrations on the solar surface, known as brightpoints. “I think my boss knew what I would find if I let a full cycle pass,” he recalls. “By 2011, I was like, holy fuck.” He found that brightpoints originate at higher latitudes than sunspots do but follow the same path to the equator. To him, this implied that sunspots and brightpoints are twin effects of the same underlying phenomenon, one not found in astrophysics textbooks.

His grand unified theory, developed over a decade, goes something like this: Every 11 years, when the sun’s polarity flips, a magnetic band forms near each pole, wrapped around the circumference of the star. These bands exist for a couple of decades, slowly migrating toward the equator, where they meet in mutual destruction. At any given time, there are usually two oppositely charged bands in each hemisphere. They counteract each other, which promotes relative calm at the surface. But magnetic bands don’t all live to be the same age. Some reach what McIntosh calls “the terminator” with unusual speed. When this happens, the younger bands are left alone for a few years, without the moderating influence of the older bands, and they have a chance to raise hell.

McIntosh and his colleague Mausumi Dikpati believe that terminator timing is the key to forecasting sunspots—and, by extension, coronal mass ejections. The faster one set of bands dies out, the more dramatic the next cycle will be.

The most recent terminator, their data suggests, happened on December 13, 2021. In the days that followed, magnetic activity near the sun’s equator dissipated (signaling the death of one set of bands) while the number of sunspots at midlatitude rapidly doubled (signaling the solo reign of the remaining bands). Because this terminator arrived slightly sooner than expected, McIntosh predicts above-average activity for the current solar cycle, peaking at around 190 sunspots.

A clear victor in the modeling wars could emerge later this year. But McIntosh is already thinking ahead to the next thing—tools that can detect where a sunspot will emerge and how likely it is to burst. He yearns for a set of satellites orbiting the sun—a few at the poles and a few around the equator, like the ones used to forecast terrestrial weather. The price tag for such an early-­warning system would be modest, he argues: eight craft at roughly $30 million each. But will anyone fund it? “I think until Cycle 25 goes bananas,” he says, “nobody’s going to give a shit.”





WHEN THE NEXT solar storm approaches Earth and the deep-space satellite provides its warning—maybe an hour in advance, or maybe 15 minutes, if the storm is fast-moving—alarms will sound on crewed spacecraft. Astronauts will proceed to cramped modules lined with hydrogen-rich materials like polyethylene, which will prevent their DNA from being shredded by protons in the plasma. They may float inside for hours or days, depending on how long the storm endures.

The plasma will begin to flood Earth’s ionosphere, and the electron bombardment will cause high-frequency radio to go dark. GPS signals, which are transmitted via radio waves, will fade with it. Cell phone reception zones will shrink; your location bubble on Google Maps will expand. As the atmosphere heats up, it will swell, and satellites will drag, veer off course, and risk collision with each other and space debris. Some will fall out of orbit entirely. Most new satellites are equipped to endure some solar radiation, but in a strong enough storm, even the fanciest circuit board can fry. When navigation and communication systems fail, the commercial airline fleet—about 10,000 planes in the sky at any given time—will attempt a simultaneous grounding. Pilots will eyeball themselves into a flight pattern while air traffic controllers use light signals to guide the planes in. Those living near military installations may see government aircraft scrambling overhead; when radar systems jam, nuclear defense protocols activate.

Through a weird and nonintuitive property of electromagnetism, the electricity coursing through the atmosphere will begin to induce currents at Earth’s surface. As those currents race through the crust, they will seek the path of least resistance. In regions with resistive rock (in the US, especially the Pacific Northwest, Great Lakes, and Eastern Seaboard), the most convenient route is upward, through the electrical grid.

The weakest points in the grid are its intermediaries—machines called transformers, which take low-voltage current from a power plant, convert it to a higher voltage for cheap and efficient transport, and convert it back down again so that it can be piped safely to your wall outlets. The largest transformers, numbering around 2,000 in the United States, are firmly anchored into the ground, using Earth’s crust as a sink for excess voltage. But during a geomagnetic storm, that sink becomes a source. Most transformers are only built to handle alternating current, so storm-induced direct current can cause them to overheat, melt, and even ignite. As one might expect, old transformers are at higher risk of failure. The average American transformer is 40 years old, pushed beyond its intended lifespan.

If just nine transformers were to blow out in the wrong places, the US could experience coast-to-coast outages for months.

Modeling how the grid would fail during another Carrington-class storm is no easy task. The features of individual transformers—age, configuration, location—are typically considered trade secrets. Metatech, an engineering firm frequently contracted by the US government, offers one of the more dire estimates. It finds that a severe storm, on par with events in 1859 or 1921, could destroy 365 high-voltage transformers across the country—about one-fifth of those in operation. States along the East Coast could see transformer failure rates ranging from 24 percent (Maine) to 97 percent (New Hampshire). Grid failure on this scale would leave at least 130 million people in the dark. But the exact number of fried transformers may matter less than their location. In 2014, The Wall Street Journal reported findings from an unreleased Federal Energy Regulatory Commission report on grid security: If just nine transformers were to blow out in the wrong places, it found, the country could experience coast-to-coast outages for months.

Prolonged national grid failure is new territory for humankind. Documents from an assortment of government agencies and private organizations paint a dismal picture of what that would look like in the United States. Homes and offices will lose heating and cooling; water pressure in showers and faucets will drop. Subway trains will stop mid-voyage; city traffic will creep along unassisted by stoplights. Oil production will grind to a halt, and so will shipping and transportation. The blessing of modern logistics, which allows grocery stores to stock only a few days’ worth of goods, will become a curse. Pantries will thin out within a few days. The biggest killer, though, will be water. Fifteen percent of treatment facilities in the country serve 75 percent of the population—and they rely on energy-intensive pumping systems. These pumps not only distribute clean water but also remove the disease- and chemical-tainted sludge constantly oozing into sewage facilities. Without power, these waste systems could overflow, contaminating remaining surface water.

As the outage goes on, health care facilities will grow overwhelmed. Sterile supplies will run low, and caseloads will soar. When backup batteries and generators fail or run out of power, perishable medications like insulin will spoil. Heavy medical hardware—dialysis machines, imaging devices, ventilators—will cease to function, and hospital wards will resemble field clinics. With death tolls mounting and morgues losing refrigeration, municipalities will face grave decisions about how to safely handle bodies.

This is roughly the point in the worst-case scenario when the meltdowns at nuclear power plants begin. These facilities require many megawatts of electricity to cool their reactor cores and spent fuel rods. Today, most American plants run their backup systems on diesel. Koroush Shirvan, a nuclear safety expert at MIT, warns that many reactors could run into trouble if outages last longer than a few weeks.


Illustration by Mark Pernice


IF YOU THUMB through enough government reports on geomagnetic storms, you’ll find that one name comes up almost every time: John G. Kappenman. He has published 50 scientific papers, spoken before Congress and NATO, and advised half a dozen federal agencies and commissions. The soft-spoken utility veteran is the man behind the cataclysmic Meta­tech projections, and he is either a visionary or an alarmist, depending on whom you ask. Kappenman spent the first two decades of his career climbing the ladder at Minnesota Power, learning the ins and outs of the utility industry. In 1998, he joined Metatech, where he advised governments and energy companies on space weather and grid resilience.

“They’ve only done things that greatly magnify their vulnerability to these storms.”

His end-of-days predictions first gained national traction in 2010, setting off such alarm that the Department of Homeland Security enlisted JASON, an elite scientific advisory group, to pull together a counter-study. “We are not convinced that Kappenman’s worst-case scenario is possible,” the authors concluded in their 2011 report. Notably, however, JASON did not challenge Kappenman’s work on its merits, nor did the group offer a competing model. Rather, its objections were rooted in the fact that Metatech’s models are proprietary, and utility industry secrecy makes it hard to run national grid simulations. Still, the authors echoed Kappenman’s essential conclusion: The US grid is dramatically underprepared for a major storm, and operators should take immediate action to harden their transformers.

The good news is that a technical fix already exists. Mitigating this threat could be as simple as outfitting vulnerable transformers with capacitors, relatively inexpensive devices that block the flow of direct current. During the 1989 storm in Quebec, the grid fell offline and stopped conducting electricity before the current could inflict widespread damage. One close call was enough, though. In the years after, Canada spent more than $1 billion on reliability upgrades, including capacitors for its most vulnerable transformers. “To cover the entirety of the US, you’re probably in the ballpark of a few billion dollars,” Kappenman says. “If you spread that cost out, it would equal a postage stamp per year per customer.” A 2020 study by the Foundation for Resilient Societies arrived at a similar figure for comprehensive grid hardening: about $500 million a year for 10 years.

To date, however, American utility companies haven’t widely deployed current-blocking devices to the live grid. “They’ve only done things, like moving to higher and higher operating voltages”—for cheaper transmission—“that greatly magnify their vulnerability to these storms,” Kappenman tells me.

Tom Berger, former director of the US government’s Space Weather Prediction Center, also expressed doubts about grid operators. “When I talk to them, they tell me they understand space weather, and they’re ready,” he says. But Berger’s confidence waned after the February 2021 collapse of the Texas power grid, which killed hundreds of people, left millions of homes and businesses without heat, and caused about $200 billion in damage. That crisis was brought on by nothing more exotic than a big cold snap. “We heard the same thing,” Berger says. “‘We understand winter; it’s no problem.’”

I reached out to 12 of the country’s largest utility companies, requesting information on specific steps taken to mitigate damage from a major geomagnetic event. American Electric Power, the country’s largest transmission network, was the only company to share concrete measures, which it says include regularly upgrading hardware, redirecting current during a storm, and quickly replacing equipment after an event. Two other companies, Consolidated Edison and Exelon, claim to have outfitted their systems with geomagnetic monitoring sensors and be instructing their operators in unspecified “procedures.” Florida Power & Light declined to meaningfully comment, citing security risks. The other eight did not respond to multiple requests for comment.

At this point, curious minds may wonder whether utility companies are even required to plan for geomagnetic storms. The answer is complicated, in a uniquely American way. In 2005, when George W. Bush, a former oil executive, occupied the Oval Office, Congress passed the Energy Policy Act, which included a grab bag of giveaways to the oil and gas industry. It rescinded much of the Federal Energy Regulatory Commission’s authority to regulate the utility industry. Reliability standards are now developed and enforced by the North American Electric Reliability Corporation—a trade association that represents the interests of those same companies.

Some find the NERC reliability standards laughable. (Two interviewees audibly laughed when asked about them.) Kappenman objected to the first set of standards, proposed in 2015, on the grounds that they were too lenient—they didn’t require utilities to prepare for a storm on par with 1859 or 1921. Berger took issue too, but for a different reason: The standards made no mention of storm duration. The ground-based effects of the Carrington Event lasted four or five consecutive days; a transformer built to withstand 10 seconds of current is very different from one ready for 120 hours.

Under pressure from the federal government, NERC enacted stricter standards in 2019. In a lengthy written statement, Rachel Sherrard, a spokeswoman for the group, emphasized that American utilities are now expected to deal with an event twice as strong as the 1989 Quebec storm. (Comparison with an old storm like Carrington, she noted, “is challenging because high-fidelity historical measurement data is not available.”) Though the new standards require utilities to fix vulnerabilities in their systems, the companies themselves determine the right approach—and the timeline.

If the utilities remain unmotivated, humanity’s ability to withstand a major geomagnetic storm will depend largely on our ability to replace damaged transformers. A 2020 investigation by the US Department of Commerce found that the nation imported more than 80 percent of its large transformers and their components. Under normal supply and demand conditions, lead times for these structures can reach two years. “People outside the industry don’t understand how difficult these things are to manufacture,” Kappenman says. Insiders know not to buy a transformer unless the factory that made it is at least 10 years old. “It takes that long to work out the kinks,” he says. In a time of solar crisis, foreign governments—even geopolitical allies—may throttle exports of vital electrical equipment, Kappenman notes. Some spare-part programs have cropped up over the past decade that allow participants to pool resources in various disaster scenarios. The size and location of these spares, however, are unknown to federal authorities—because the industry won’t tell them.

One day regulators may manage to map the electrical grid, even stormproof it (provided a big one doesn’t wipe it out first). Engineers may launch a satellite array that gives us days to batten down the hatches. Governments may figure out a way to stand up emergency transformers in a pinch. And there the sun will be—the inconceivable, inextinguishable furnace at the center of our solar system that destroys as indiscriminately as it creates. Life on this little mote depends entirely on the mercy of a cosmic nuclear power with an itchy trigger finger. No human triumph will ever change that. (But we should still buy the capacitors. Soon, please.)