Quotes & Sayings


We, and creation itself, actualize the possibilities of the God who sustains the world, towards becoming in the world in a fuller, more deeper way. - R.E. Slater

There is urgency in coming to see the world as a web of interrelated processes of which we are integral parts, so that all of our choices and actions have [consequential effects upon] the world around us. - Process Metaphysician Alfred North Whitehead

Kurt Gödel's Incompleteness Theorem says (i) all closed systems are unprovable within themselves and, that (ii) all open systems are rightly understood as incomplete. - R.E. Slater

The most true thing about you is what God has said to you in Christ, "You are My Beloved." - Tripp Fuller

The God among us is the God who refuses to be God without us, so great is God's Love. - Tripp Fuller

According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for this world to recreate, reclaim, redeem, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater

Our eschatological ethos is to love. To stand with those who are oppressed. To stand against those who are oppressing. It is that simple. Love is our only calling and Christian Hope. - R.E. Slater

Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger

Exploring the edge of life and faith in a post-everything world. - Todd Littleton

I don't need another reason to believe, your love is all around for me to see. – Anon

Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII

Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut

Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest

We become who we are by what we believe and can justify. - R.E. Slater

People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. – Anon

Certainly, God's love has made fools of us all. - R.E. Slater

An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater

Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann

Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument. There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is irreducibly subject and never made as an object, a force, a power, or a principle that can be manipulated. - Emil Brunner

“Ehyeh Asher Ehyeh” means "I will be that who I have yet to become." - God (Ex 3.14) or, conversely, “I AM who I AM Becoming.”

Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton

The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table to share life with one another as a new kind of family. When this happens, we show to the world what love, justice, peace, reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. – Anon

The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul

The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah

If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer

God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power is made perfect in weakness; and His grace is sufficient for all. – Anon

Our little [biblical] systems have their day; they have their day and cease to be. They are but broken lights of Thee, and Thou, O God art more than they. - Alfred Lord Tennyson

We can’t control God; God is uncontrollable. God can’t control us; God’s love is uncontrolling! - Thomas Jay Oord

Life in perspective but always in process... as we are relational beings in process to one another, so life events are in process in relation to each event... as God is to Self, is to world, is to us... like Father, like sons and daughters, like events... life in process yet always in perspective. - R.E. Slater

To promote societal transition to sustainable ways of living and a global society founded on a shared ethical framework which includes respect and care for the community of life, ecological integrity, universal human rights, respect for diversity, economic justice, democracy, and a culture of peace. - The Earth Charter Mission Statement

Christian humanism is the belief that human freedom, individual conscience, and unencumbered rational inquiry are compatible with the practice of Christianity or even intrinsic in its doctrine. It represents a philosophical union of Christian faith and classical humanist principles. - Scott Postma

It is never wise to have a self-appointed religious institution determine a nation's moral code. The opportunities for moral compromise and failure are high; the moral codes and creeds assuredly racist, discriminatory, or subjectively and religiously defined; and the pronouncement of inhumanitarian political objectives quite predictable. - R.E. Slater

God's love must both center and define the Christian faith and all religious or human faiths seeking human and ecological balance in worlds of subtraction, harm, tragedy, and evil. - R.E. Slater

In Whitehead’s process ontology, we can think of the experiential ground of reality as an eternal pulse whereby what is objectively public in one moment becomes subjectively prehended in the next, and whereby the subject that emerges from its feelings then perishes into public expression as an object (or “superject”) aiming for novelty. There is a rhythm of Being between object and subject, not an ontological division. This rhythm powers the creative growth of the universe from one occasion of experience to the next. This is the Whiteheadian mantra: “The many become one and are increased by one.” - Matthew Segall

Without Love there is no Truth. And True Truth is always Loving. There is no dichotomy between these terms but only seamless integration. This is the premier centering focus of a Processual Theology of Love. - R.E. Slater

-----

Note: Generally I do not respond to commentary. I may read the comments but wish to reserve my time to write (or write off the comments I read). Instead, I'd like to see our community help one another and in the helping encourage and exhort each of us towards Christian love in Christ Jesus our Lord and Savior. - re slater

Wednesday, May 19, 2021

The Quantum Physics of a Particle Universe

In the (Processual) Beginning


"And God said let there be process; and
God divided one process from another;
then God saw everything he had made,
and behold, it was very good. And the
evening and the morning were the first day."

"And behold, wherever man looked he saw process;
Then man said to himself let us divide one process
from another; and behold, it was very good. And the
era of ecohumanity and social justice commenced a
healing of processual processes for both man and God."


R.E. Slater
May 19, 2021
rev. September 8, 2021


@copyright R.E. Slater Publications
all rights reserved



Theory of Everything (intro)



Theory of Everything: What is Matter?



Every Force in Nature (Theory of Everything, Part III)



Time Travel in Fiction Rundown



Physicist Explains Dimensions in 5 Levels of Difficulty | WIRED







Particle

Jump to navigationJump to search
This is an atom, and it is very small. Atoms are made up of particles. Red circles represent protons and blue circles represent neutrons. The atom shown here is a helium atom.

particle is a tiny bit of matter that makes up everything in the universe. In particle physics, an elementary particle is a particle which cannot be split up into smaller pieces.

There are many different types of particles, with different particle sizes and properties.

Macroscopic particles are particles that are larger than atoms or molecules. They have volume and shape. Powder and dust are some examples of macroscopic particles. Nanoparticles are an intermediate size, being a very fine powder but much larger than atoms.

Atoms and molecules are called microscopic particles.

Subatomic particles are particles that are smaller than atoms. The proton, the neutron, and the electron are subatomic particles. These are the particles which make atoms. The proton has a positive charge (a + charge). The neutron has a neutral charge. The electron has a negative charge (a - charge), and it is the smallest of these three particles. In atoms, there is a small nucleus in the center, which is where the protons and neutrons are, and electrons orbit the nucleus.

Protons and neutrons are made up of quarks. Quarks are subatomic particles, but they are also elementary particles because we do not know if they are made up of even smaller particles. There are six different types of quarks. These are the up quark, the down quark, the strange quark, the charm quark, the bottom quark, and the top quark. A neutron is made of two down quarks and one up quark. The proton is made up of two up quarks and one down quark.



* * * * * * * * *





Theoretical particle

Jump to navigationJump to search

Theoretical particles are particles that have been assumed or predicted to exist by scientists, but have not been proven in any experiment. Some, like the tachyon, probably don't exist, since they violate several laws of physics. However, many are still believed to exist. All supersymmetric particles (such as a sfermion) are theoretical. Supersymmetrical particles are often abbreviated with an "s" in front of the particle name, like a sfermion. Particles found in antimatter are not theoretical particles because they have been found in numerous experiments.


A list of theoretical particles

Supersymmetrical Particles

Particles that disobey laws of physics

Other hypothetical particles


* * * * * * * * *



Standard Model of elementary particles.
1 GeV/c2 = 1.783x10-27 kg. 1 MeV/c2 = 1.783x10-30 kg.



Elementary particle


In physics, an elementary particle or fundamental particle is a particle that is not made of other particles.

An elementary particle can be one of two groups: a fermion or a boson. Fermions are the building blocks of matter and have mass, while bosons behave as force carriers for fermion interactions and some of them have no mass.[1] The Standard Model is the most accepted way to explain how particles behave, and the forces that affect them. According to this model, the elementary particles are further grouped into quarks, leptons, and gauge bosons, with the Higgs boson having a special status as a non-gauge boson.

Of the particles that make up an atom, only the electron is an elementary particle. Protons and neutrons are each made of 3 quarks, which makes them composite particles, particles that are made of other particles. The quarks are bound together by the gluons. The nucleus has boson pion fields responsible for the strong nuclear force binding protons and neutrons against the electrostatic repulsion between protons. Such virtual pions are composed of quark antiquark pairs again held together by gluons.

There are three basic properties that describe an elementary particle: ’mass’, ’charge’, and ’spin’. Each property is assigned a number value. For mass and charge the number can be zero. For example, a photon has zero mass and a neutrino has zero charge. These properties always stay the same for an elementary particle.

  • Mass: A particle has mass if it takes energy to increase its speed, or to accelerate it. The table to the right gives the mass of each elementary particle. The values are given in MeV/c2s (that is pronounced megaelectronvolts over "c" squared), that is in units of energy over the speed of light squared. This comes from special relativity, which tells us that energy equals mass times the square of the speed of light. All particles with mass-produce gravity. All particles are affected by gravity, even particles with no mass like the photon (see general relativity).
  • Electric charge: Particles may have positive charge, or negative, or none. If one particle has a negative charge, and another particle has a positive charge, the two particles are attracted to each other. If the two particles both have negative charge, or both have positive charge, the two particles are pushed apart. At short distances, this force is much stronger than the force of gravity which pulls all particles together. An electron has charge -1. A proton has charge +1. A neutron has an average charge 0. Normal quarks have charge of ⅔ or -⅓.
  • Spin: The angular momentum or constant turning of a particle has a particular value, called its spin number. Spin for elementary particles is one or ½. The spin property of particles only denotes the presence of angular momentum. In reality, the particles do not spin.

Mass and charge are properties we see in everyday life, because gravity and electricity affect things that humans see and touch. But spin affects only the world of subatomic particles, so it cannot be directly observed.

Fermions

Fermions (named after the scientist Enrico Fermi) have a spin number of ½, and are either quarks or leptons. There are 12 different types of fermions (not including antimatter). Each type is called a "flavor". The flavors are:

  • Quarks: up, down, charm, strange, top, bottom. Quarks come in three pairs, called "generations". The 1st generation (up and down) is the lightest and the third (top and bottom) is the heaviest. One member of each pair (up, charm and top) has a charge of ⅔. The other member (down, strange and bottom) has charge -⅓.
  • Leptonselectronmuontauelectron neutrino, muon neutrino, tau neutrino. The neutrinos have charge 0, hence the neutr- prefix. The other leptons have charge -1. Each neutrino is named after its corresponding original lepton: the electron, muon, and tauon.

Six of the 12 fermions are thought to last forever: up and down quarks, the electron, and the three kinds of neutrinos (which constantly switch flavor). The other fermions decay. That is, they break down into other particles a fraction of a second after they are created. Fermi-Dirac statistics is a theory that describes how collections of fermions behave.

Bosons

Bosons, named after the Indian physicist Satyendra Nath Bose, have spin 1. Although most bosons are made of more than one particle, there are two kinds of elementary bosons:

The photon and the gluons have no charge, and are the only elementary particles that have a mass of 0 for certain. The photon is the only boson that does not decay. Bose-Einstein statistics is a theory that describes how collections of bosons behave. Unlike fermions, it is possible to have more than one boson in the same space at the same time.

The Standard Model includes all of the elementary particles described above. All these particles have been observed in the laboratory.

The Standard Model does not talk about gravity. If gravity works like the three other fundamental forces, then gravity is carried by the hypothetical boson called the graviton. The graviton has yet to be found, so it is not included in the table above.

The first fermion to be discovered, and the one we know the most about, is the electron. The first boson to be discovered, and also the one we know the most about, is the photon. The theory that most accurately explains how the electron, photon, electromagnetism, and electromagnetic radiation all work together is called quantum electrodynamics.



* * * * * * * * *


click to enlarge







Elementary particles
From Simple English Wikipedia, the free encyclopedia

A
Axion

B
Boson

E
Electron

F
Fermion

G
Gauge boson
Gluon
Gravitino

H
Higgs boson

L
Lepton

M
Muon

N
Neutrino

P
Photon
Positron

Q



* * * * * * * * *








click here to enlarge



click to enlarge here



click here to enlarge




Composite particle

Jump to navigationJump to search

Composite particles are subatomic particles that are made of more than one quark. Simple particles like protons are actually composites of multiple quarks. Protons are known as baryons, which means that they are made of exactly three quarks. Baryons are in a family called Hadrons, which simply means that they are made of quarks. The only other subcategory of Hadrons is Mesons, which are made of one quark and one antiquark.

Since they are made of quarks, composite particles are not so much hard balls, but rather like clouds that contain these quarks. Depending on the energy contained by the quarks, the quarks of a proton vibrate, and this gives a proton a size larger than the actual size of the three quarks combined.


* * * * * * * * *


click here to enlarge


List of particles

Jump to navigationJump to search

This is a list of known and hypothesized particles.


Elementary Particles

Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles.[1] They are the fundamental objects of quantum field theory. Many families and sub-families of elementary particles exist. Elementary particles are classified according to their spinFermions have half-integer spin while bosons have integer spin. All the particles of the Standard Model have been experimentally observed, recently including the Higgs boson in 2012.[2][3] Many other hypothetical elementary particles, such as the graviton, have been proposed, but not observed experimentally.

Fermions

Fermions are one of the two fundamental classes of particles, the other being bosons. Fermion particles are described by Fermi–Dirac statistics and have quantum numbers described by the Pauli exclusion principle. They include the quarks and leptons, as well as any composite particles consisting of an odd number of these, such as all baryons and many atoms and nuclei.

Fermions have half-integer spin; for all known elementary fermions this is 12. All known fermions, except neutrinos, are also Dirac fermions; that is, each known fermion has its own distinct antiparticle. It is not known whether the neutrino is a Dirac fermion or a Majorana fermion.[4] Fermions are the basic building blocks of all matter. They are classified according to whether they interact via the strong interaction or not. In the Standard Model, there are 12 types of elementary fermions: six quarks and six leptons.

Quarks

Quarks are the fundamental constituents of hadrons and interact via the strong force. Quarks are the only known carriers of fractional charge, but because they combine in groups of three (baryons) or in pairs of one quark and one antiquark (mesons), only integer charge is observed in nature. Their respective antiparticles are the antiquarks, which are identical except that they carry the opposite electric charge (for example the up quark carries charge +23, while the up antiquark carries charge −23), color charge, and baryon number. There are six flavors of quarks; the three positively charged quarks are called "up-type quarks" while the three negatively charged quarks are called "down-type quarks".

Quarks
GenerationNameSymbolAntiparticleSpinCharge
(e)
Mass (MeV/c2[5]
1upu
u
12+232.2+0.6
−0.4
downd
d
12134.6+0.5
−0.4
2charmc
c
12+231,280±30
stranges
s
121396+8
−4
3topt
t
12+23173,100±600
bottomb
b
12134,180+40
−30

Leptons

Leptons do not interact via the strong interaction. Their respective antiparticles are the antileptons, which are identical, except that they carry the opposite electric charge and lepton number. The antiparticle of an electron is an antielectron, which is almost always called a "positron" for historical reasons. There are six leptons in total; the three charged leptons are called "electron-like leptons", while the neutral leptons are called "neutrinos". Neutrinos are known to oscillate, so that neutrinos of definite flavor do not have definite mass, rather they exist in a superposition of mass eigenstates. The hypothetical heavy right-handed neutrino, called a "sterile neutrino", has been left off the list.

Leptons
GenerationNameSymbolAntiparticleSpinCharge
(e)
Mass (MeV/c2[5]
1Electron
e

e+
12−10.511[note 1]
Electron neutrino
ν
e

ν
e
120< 0.0000022
2Muon
μ

μ+
12−1105.7[note 2]
Muon neutrino
ν
μ

ν
μ
120< 0.170
3Tau
τ

τ+
12−11,776.86±0.12
Tau neutrino
ν
τ

ν
τ
120< 15.5
  1. ^ The electron mass is known very precisely as 0.5109989461±0.0000000031 MeV/c2
  2. ^ The muon mass is known very precisely as 105.6583745±0.0000024 MeV/c2


Bosons

Bosons are one of the two fundamental particles having integral spinclasses of particles, the other being fermions. Bosons are characterized by Bose–Einstein statistics and all have integer spins. Bosons may be either elementary, like photons and gluons, or composite, like mesons.

According to the Standard Model, the elementary bosons are:

NameSymbolAntiparticleSpinCharge (e)Mass (GeV/c2[5]Interaction mediatedObserved
PhotonγSelf100ElectromagnetismYes
W boson
W

W+
1−180.385±0.015Weak interactionYes
Z boson
Z
Self1091.1875±0.0021Weak interactionYes
Gluon
g
Self100Strong interactionYes
Higgs boson
H0
Self00125.09±0.24MassYes

The Higgs boson is postulated by the electroweak theory primarily to explain the origin of particle masses. In a process known as the "Higgs mechanism", the Higgs boson and the other gauge bosons in the Standard Model acquire mass via spontaneous symmetry breaking of the SU(2) gauge symmetry. The Minimal Supersymmetric Standard Model (MSSM) predicts several Higgs bosons. On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature.

Elementary bosons responsible for the four fundamental forces of nature are called force particles (gauge bosons). Strong interaction is mediated by the gluonweak interaction is mediated by the W and Z bosons.

Hypothetical particles

Supersymmetric theories predict the existence of more particles, none of which have been confirmed experimentally.

NameSymbolAntiparticleSpinCharge (e)Mass (GeV/c2[5]Interaction mediatedObserved
GravitonGSelf200GravitationNo

The graviton is a hypothetical particle that has been included in some extensions to the standard model to mediate the gravitational force. It is in a peculiar category between known and hypothetical particles: As an unobserved particle that is not predicted by, nor required for the Standard Model, it belongs in the table of hypothetical particles, below. But gravitational force itself is a certainty, and expressing that known force in the framework of a quantum field theory requires a boson to mediate it.

Superpartners (Sparticles)
SuperpartnerSpinNotessuperpartner of:
chargino12The charginos are superpositions of the superpartners of charged Standard Model bosons: charged Higgs boson and W boson.
The MSSM predicts two pairs of charginos.
charged bosons
gluino12Eight gluons and eight gluinos.gluon
gravitino32Predicted by supergravity (SUGRA). The graviton is hypothetical, too – see next table.graviton
Higgsino12For supersymmetry there is a need for several Higgs bosons, neutral and charged, according with their superpartners.Higgs boson
neutralino12The neutralinos are superpositions of the superpartners of neutral Standard Model bosons: neutral Higgs bosonZ boson and photon.
The lightest neutralino is a leading candidate for dark matter.
The MSSM predicts four neutralinos.
neutral bosons
photino12Mixing with zino and neutral Higgsinos for neutralinos.photon
sleptons0The superpartners of the leptons (electron, muon, tau) and the neutrinos.leptons
sneutrino0Introduced by many extensions of the Standard Supermodel, and may be needed to explain the LSND results.
A special role has the sterile sneutrino, the supersymmetric counterpart of the hypothetical right-handed neutrino, called the "sterile neutrino".
neutrino
squarks0The stop squark (superpartner of the top quark) is thought to have a low mass and is often the subject of experimental searches.quarks
wino, zino12The charged wino mixing with the charged Higgsino for charginos, for the zino see line above.W± and Z0 bosons

Just as the photon, Z boson and W± bosons are superpositions of the B0, W0, W1, and W2 fields, the photino, zino, and wino± are superpositions of the bino0, wino0, wino1, and wino2. No matter if one uses the original gauginos or this superpositions as a basis, the only predicted physical particles are neutralinos and charginos as a superposition of them together with the Higgsinos.

Other theories predict the existence of additional bosons:

Other hypothetical bosons and fermions
NameSpinNotes
axion0A pseudoscalar particle introduced in Peccei–Quinn theory to solve the strong-CP problem.
axino12Superpartner of the axion. Forms, together with the saxion and axion, a supermultiplet in supersymmetric extensions of Peccei–Quinn theory.
branon?Predicted in brane world models.
chameleon0a possible candidate for dark energy and dark matter, and may contribute to cosmic inflation.
dilaton0Predicted in some string theories.
dilatino12Superpartner of the dilaton.
dual graviton2Has been hypothesized as dual of graviton under electric–magnetic duality in supergravity.
graviphoton1Also known as "gravivector".[6]
graviscalar0Also known as "radion".
inflaton0Unknown force-carrier that is presumed to have the physical cause of cosmological “inflation” – the rapid expansion from 10−35 to 10−34 seconds after the Big Bang.
magnetic photon?A. Salam (1966). "Magnetic monopole and two photon theories of C-violation." Physics Letters 22 (5): 683–684.
majoron0Predicted to understand neutrino masses by the seesaw mechanism.
majorana fermion12 ; 32 ?...gluinoneutralino, or other – is its own antiparticle.
saxion0
X17 particle?possible cause of anomalous measurement results near 17 MeV, and possible candidate for dark matter.
X and Y bosons1These leptoquarks are predicted by GUT theories to be heavier equivalents of the W and Z.
W' and Z' bosons1

Mirror particles are predicted by theories that restore parity symmetry.

"Magnetic monopole" is a generic name for particles with non-zero magnetic charge. They are predicted by some GUTs.

"Tachyon" is a generic name for hypothetical particles that travel faster than the speed of light (and so paradoxically experience time in reverse due to inversal of Theory of relativity) and have an imaginary rest mass, they would violate the laws of causality.

Preons were suggested as subparticles of quarks and leptons, but modern collider experiments have all but ruled out their existence.

Kaluza–Klein towers of particles are predicted by some models of extra dimensions. The extra-dimensional momentum is manifested as extra mass in four-dimensional spacetime.

Composite particles

Hadrons

Hadrons are defined as strongly interacting composite particles. Hadrons are either:

  • Composite fermions (especially 3 quarks), in which case they are called baryons.
  • Composite bosons (especially 2 quarks), in which case they are called mesons.

Quark models, first proposed in 1964 independently by Murray Gell-Mann and George Zweig (who called quarks "aces"), describe the known hadrons as composed of valence quarks and/or antiquarks, tightly bound by the color force, which is mediated by gluons. (The interaction between quarks and gluons is described by the theory of quantum chromodynamics.) A "sea" of virtual quark-antiquark pairs is also present in each hadron.

Baryons

A combination of three u, d or s-quarks with a total spin of 32 form the so-called "baryon decuplet".
Proton quark structure: 2 up quarks and 1 down quark. The gluon tubes or flux tubes are now known to be Y shaped.

Ordinary baryons (composite fermions) contain three valence quarks or three valence antiquarks each.

  • Nucleons are the fermionic constituents of normal atomic nuclei:
    • Protons, composed of two up and one down quark (uud)
    • Neutrons, composed of two down and one up quark (ddu)
  • Hyperons, such as the Λ, Σ, Ξ, and Ω particles, which contain one or more strange quarks, are short-lived and heavier than nucleons. Although not normally present in atomic nuclei, they can appear in short-lived hypernuclei.
  • A number of charmed and bottom baryons have also been observed.
  • Pentaquarks consist of four valence quarks and one valence antiquark.
  • Other exotic baryons may also exist.

Mesons

Mesons of spin 0 form a nonet

Ordinary mesons are made up of a valence quark and a valence antiquark. Because mesons have spin of 0 or 1 and are not themselves elementary particles, they are "composite" bosons. Examples of mesons include the pionkaon, and the J/ψ. In quantum hadrodynamics, mesons mediate the residual strong force between nucleons.

At one time or another, positive signatures have been reported for all of the following exotic mesons but their existences have yet to be confirmed.

  • tetraquark consists of two valence quarks and two valence antiquarks;
  • glueball is a bound state of gluons with no valence quarks;
  • Hybrid mesons consist of one or more valence quark–antiquark pairs and one or more real gluons.

Atomic nuclei

semi-accurate depiction of the helium atom. In the nucleus, the protons are in red and neutrons are in purple. In reality, the nucleus is also spherically symmetrical.

Atomic nuclei consist of protons and neutrons. Each type of nucleus contains a specific number of protons and a specific number of neutrons, and is called a "nuclide" or "isotope". Nuclear reactions can change one nuclide into another. See table of nuclides for a complete list of isotopes.

Atoms

Atoms are the smallest neutral particles into which matter can be divided by chemical reactions. An atom consists of a small, heavy nucleus surrounded by a relatively large, light cloud of electrons. Each type of atom corresponds to a specific chemical element. To date, 118 elements have been discovered or created.

An atomic nucleus consists of 1 or more protons and 0 or more neutrons. Protons and neutrons are, in turn, made of quarks.

Molecules

Molecules are the smallest particles into which a substance can be divided while maintaining the chemical properties of the substance. Each type of molecule corresponds to a specific chemical substance. A molecule is a composite of two or more atoms. See list of compounds for a list of molecules. Atoms are combined in a fixed proportion to form a molecule. Molecule is one of the most basic units of matter.

Quasiparticles

Quasiparticles are effective particles that exist in many particle systems. The field equations of condensed matter physics are remarkably similar to those of high energy particle physics. As a result, much of the theory of particle physics applies to condensed matter physics as well; in particular, there are a selection of field excitations, called quasi-particles, that can be created and explored. These include:

Other

  • Accelerons are hypothetical particles postulated to relate neutrino mass to dark energy, and are named for the role they play in the accelerating expansion of the universe
  • An anyon is a generalization of fermion and boson in two-dimensional systems like sheets of graphene that obeys braid statistics.
  • plekton is a theoretical kind of particle discussed as a generalization of the braid statistics of the anyon to dimension > 2.
  • WIMP (weakly interacting massive particle) is any one of a number of particles that might explain dark matter (such as the neutralino or the axion).
  • WISP (weakly interacting slender particle) is any one of a number of low mass particles that might explain dark matter.
  • GIMP (gravitationally interacting massive particle) is a particle which provides an alternative explanation of dark matter, instead of the aforementioned WIMP.
  • The pomeron, used to explain the elastic scattering of hadrons and the location of Regge poles in Regge theory.
  • The skyrmion, a topological solution of the pion field, used to model the low-energy properties of the nucleon, such as the axial vector current coupling and the mass.
  • Goldstone boson is a massless excitation of a field that has been spontaneously broken. The pions are quasi-goldstone bosons (quasi- because they are not exactly massless) of the broken chiral isospin symmetry of quantum chromodynamics.
  • goldstino is a goldstone fermion produced by the spontaneous breaking of supersymmetry.
  • An instanton is a field configuration which is a local minimum of the Euclidean action. Instantons are used in nonperturbative calculations of tunneling rates.
  • dyon is a hypothetical particle with both electric and magnetic charges.
  • geon is an electromagnetic or gravitational wave which is held together in a confined region by the gravitational attraction of its own field of energy.
  • An inflaton is the generic name for an unidentified scalar particle responsible for the cosmic inflation.
  • spurion is the name given to a "particle" inserted mathematically into an isospin-violating decay in order to analyze it as though it conserved isospin.
  • What is called "true muonium", a bound state of a muon and an antimuon, is a theoretical exotic atom which has never been observed.
  • dislon is a localized collective excitation of a crystal dislocation around the static displacement.

Classification by speed

  • tardyon or bradyon travels slower than light and has a non-zero, real rest mass.
  • luxon travels at the speed of light and has no rest mass.
  • tachyon (mentioned above) is a hypothetical particle that travels faster than the speed of light and has an imaginary rest mass.

See also





Quantum Field Theory Visualized



The Map of Particle Physics | The Standard Model Explained



Mapping Particle Physics



Quantum Field Theory: What is a particle?








Tuesday, May 18, 2021

Frothy Magnetic-Bubble Sea Found at Solar System's Edge

Old and new theories of magnetic fields in the outer solar system.
Long thought to be a smooth shield, our solar system's edge may be more
of a magnetic "foam zone."DIAGRAM COURTESY NASA


Frothy Magnetic-Bubble Sea
Found at Solar System's Edge

"Foam zone" could be letting in harmful cosmic rays, NASA says.

BYKER THANFOR NATIONAL GEOGRAPHIC NEWS
PUBLISHED JUNE 10, 2011

The edge of the solar system may be a frothy sea of giant magnetic "bubbles," a new NASA study says.

The new findings may mean that our system's magnetic barrier—once thought to be a smooth shield—may be letting in more harmful cosmic rays and energetic particles than previously thought.

The new "foam zone" theory is based on a computer model created using data from NASA's twin Voyager spacecraft, both launched in 1977 and currently about 10 billion miles (16 billion kilometers) from Earth.

In 2007 Voyager 1 recorded dramatic dips and rises in the amount of electrons it encountered as the craft traveled through the heliosphere—the "force field" that surrounds the entire solar system and is created by the sun's magnetic field. Voyager 2 made similar observations of these charged particles in 2008.

A NASA computer model suggests the electron readings make sense if it's assumed the spacecraft were entering and exiting magnetic bubbles lining the edges of the heliosphere.

These magnetobubbles should act as electron traps, so the spacecraft would experience higher than normal electron bombardment.


Cosmic Jacuzzi Filled With Magnetic Bubbles?

According to the new model, the bubbles are large—about 100 million miles (160 million kilometers) wide—and shaped "like long sausages," said Merav Opher, an astronomer at Boston University, at a NASA press conference today.

The bubbles might be created by the rotation of the sun, the scientists said.

Like Earth, our sun has a magnetic field with a north pole and a south pole. As the sun spins, this magnetic field—which extends all the way to the edge of the solar system—should get twisted and wrinkled, like a ballerina's skirt.

"Far, far away from the sun, where the Voyagers are now, the folds of the skirt get bunched up," Opher said in a statement.


These "folds" can get broken up into numerous magnetic bubbles, creating a "foam zone" along the edge of the heliosphere.

"It's very bubbly as far as we can tell," Jim Drake, a University of Maryland physicist, said at the press conference. "This entire thing is like the most bubbly part of your Jacuzzi."

Unlike a hot tub's roiling surface, however, the foam zone should be relatively calm, Opher said.

"Inside this sea of bubbles, there are oscillations. ... They are not huge but they are measurable," he said. "I would say it's a quiet turbulence."


Softer Magnetic Shield No Threat to Earth

One implication of the new finding is that the edge of the heliosphere is more like a membrane than a shield against cosmic rays.

Galactic cosmic rays can become temporarily trapped in the foam zone, but they will eventually wander into our system and then zip along the solar magnetic field lines toward the sun and Earth, the researchers say.

"We're living on Earth, so we don't have to worry about, it because we're shielded by a thick atmosphere," Opher explained.

"But if you're an astronaut heading to Mars, you really have to care about the radiation environment in the heliosphere." Cosmic radiation can, among other things, compromise the body's immune system.


The new findings could also affect astronomers' understanding about the environments around other stars.

"What we know abut the heliosphere serves as a model for other stars," Opher said. "So the fact that we're revisiting what we know about the [heliosphere] will mean we will probably have to revisit what we know about other astrosheaths as well."

---

The research will be detailed in the June 9 issue of Astrophysical Journal.


Arguments for "Creatio Continua": What Came Before the Big Bang?



Parallel Universes



What Was the Universe Like Before the Big Bang? | Unveiled
May 22, 2021



* * * * * * * * *


Looking Beyond the Garden:
What Came Before the Big Bang?

by Larry Rettig (LarryR) on July 7, 2013

This article concludes the series, "Looking Beyond the Garden." As we’ve seen in two of the previous articles, a tiny portion of something exploded into space and grew to an enormous size. It created a universe of matter and energy, from which grew nebulas, stars, and planets, among other things. And eventually it produced abundant life on the planet Earth. The universe is still expanding today, a phenomenon that can be measured scientifically. But what came before this Big Bang?

The short answer is simply: We don’t know.

Here is a sampling of some current theories or aspects of theories as I understand them. I’ve tried to state them as simply and concisely as possible.


What came before the Big Bang?

1. Nothing - According to Einstein’s work there was nothing before the Big Bang. Period.



2. Hartle-Hawking theory - There was no time before the Big Bang. It didn’t exist before the formation of “spacetime” associated with the Big Bang. James Hartle and Stephen Hawking theorize that since beginnings have to do with time, the concept of a beginning of the universe is meaningless. Before the Big Bang there was just a “singularity,” a point at which something cannot be defined because it is infinite.



3. The inflationary universe - Just before the Big Bang, space was filled with some sort of unstable energy, which exploded and created the ever-expanding universe.

4. Self-creating universeBefore the Big Bang there existed a loop of “something.” Because it was a loop, it had no beginning and no end. At some point, a “branch” popped out of the loop, and that was the beginning of our universe.

5. Universes expand and collapse (Big Bounce Theory)Since everything in nature is cyclical, universes are continually expanding and collapsing. Therefore, before the Big Bang there was another expanding universe.

6. The Multiverse theorySometimes called the meta-universe, the multiverse is a set of either infinite or finite possible universes (including ours) that taken together encompass everything that has ever existed, including all of space, time, matter, and energy as well as the physical laws that describe them. The various universes within the multiverse are sometimes also called parallel universes.

7. Ball of gravity and energyBefore the Big Bang there was a ball of gravity with energy trapped inside it. No mass or particles existed. There was a lot of activity inside the ball as the energy tried to escape gravitational pull. Finally, weak points developed in the ball and energy was able to escape via a giant explosion.

8. String theoryThe basic particles in the universe are not small points but rather shaped like strings. We can only see three dimensions, but space can have more than that. Events before the Big Bang could have included a collision of our own universe with a parallel universe that was made of extra dimensions. These universes exist as membranes, connected by gravity. The science behind these ideas is complex and beyond the grasp of most of us, but now occupy some of the greatest minds in physics.

Parallel Universes


Conclusion - Ultimately, no matter what the theory—and despite the fact that there are theories that say there was nothing before the Big Bang [The Greek View: Creatio Ex Nihilo - re slater] we still tend to wonder: And what came before that?

From a scientific point of view, it’s hard for us to get our heads around a concept like: It just is, period. There is no precursor. To our earthbound sensibilities it just doesn't make sense to get something from nothing. There must be an agent. If we believe in an ultimate power (God, Supreme Being, Higher Power, Buddha, Great Mystery—the list goes on) the it-just-is concept may be a bit easier to accept. In the end, religion and spirituality fill the void left by science.


* * * * * * * * *


Summary

by RE Slater

To tack on to Larry Rettig's concluding observation, the something from nothing point of view (creatio ex nihilo) requires an agent: God. A God who creates something from nothing. But as has been noted this is an impossibility. Even with a "spiritual" God who is not "physical" (e.g., classic theism; this also dissents from the pantheistic argument that God and creation are one as to confusing ontology with cosmology).

Rather, from a Process Christian standpoint, we assert that there was always something there (sic, Process-Relational Panentheism). There were always a material forces present with-or-without timeful presence (1D space posits timelessness). If spacetime is concentrated by overwhelming quantum gravities then there can only be quantum forces in stasis, not time. Time then becomes irrelevant. Basically, if we could walk around and look into this space, time would feel infinite rather than non-existent. For time to work there must be an irregularity between the relationships of quantumized material forces (cf. Wrinkles in Time, by George Smoot).

Thus, God is the First Order of Process who instigates a divine action onto, over, into, etc, the there which was there. That is, God subtends God's God-ness onto primordial forces thus creating a Secondary ordering of Processes which continue internally vis-a-vis cosmic inflation, expansion, contraction, merger separation, etc., between multiverses, or whatever science can imagine in the years to come.

This means that God's Self has inducted him/her/itself into all concurring processes - whether they be chaotic or random, ordering or disordering, but always granted a teleology of creating novel reactions to all previous novel reactions in a time-filled multi/uni/verse. As such, all secondary processes are granted the ability to (i) love (translated: create wellbeing and valuative relationships), (ii) undetermined freewill (indeterminate agency), and (iii) bring creative novelty into existence, among other divine qualities.

But with freewill can arise ungodlike qualities. On a human level these can be evidenced in racial inequality and social injustice. But on a natural scale it becomes harder to say what is, and what isn't, "good" for the universe. Death is a natural part of life. All material processes are mortal even though it's system of process is eternally immortal. So who can say if a tornado is "unnatural" though it destroys? Or a black hole is "unnatural" though it eclipses whole worlds while spawning new worlds and new life?

What can be said is that humanity must work towards unity and solidarity in healthy ways of restorative wellbeing, justice, and equality. Not only towards others but towards the Earth. Why? (i) We live in a process universe going about its task of being its process self. (ii) We have been spawned evolutionarily from universal processes. Hence, (iii) we are tasked to recognize how we fit into the process nature of life to do what we can within this life giving, life threatening, and deadly process system.

God is fundamentally, and intrinsically, good and loving. God's Self is a process-based God. God has wholly imparted his divine Self into existing, unformed creation. A creation which struggles towards life-giving qualities but also takes away those qualities within its random disorder and entropic design.

To imply moral and ethic from basic material processes would be unwise. The universe as a process yearns towards life even as it struggles against itself by its own agency. As a question of theodicy (sin and evil vs life and yearning for wellbeing, nurture, and self-giving) we can only say God is good and loving. How or what this means in a process universe becomes a more delicate, or nuanced, task of statement. Generally, the universe's teleology is towards wholeness, healing, and goodness. But broken down it's harder to see or to show evidence for in a process-filled entropic universe. And since I'm rambling this is a good place to stop.  :)

Peace always,

R.E. Slater
May 18, 2021


Stephen Hawking Knew What Happened Before the Big Bang
Dec 9, 2020





* * * * * * *


Credit: Anton Pannekoek


Is the Universe a quantum fluctuation?


Perhaps the whole Universe is the result of a vacuum fluctuation,
originating from what we could call quantum nothingness.


KEY TAKEAWAYS

Can science explain the origin of everything?

All models proposed so far to describe the origin of the Universe use quantum mechanical ideas to make sense of the beginning of time.

The first of these models proposed that the Universe came from an energy fluctuation out of the quantum vacuum — the quantum egg that gave rise to everything.


This is the eleventh article in a series about modern cosmology.


Can science figure out how the Universe came to be? The Big Bang model, as developed by George Gamow, Ralph Alpher, and Robert Herman, reconstructed the history of the Universe from about one ten-thousandth of a second after the “bang,” all the way to the formation of the first hydrogen atoms and the decoupling of photons when the Universe was about 400,000 years old. That last process gave rise to the cosmic microwave background radiation, which was discovered in 1965.

The breakdown of physics as we know it

In its infancy, the Universe was filled with a primordial soup of elementary particles and radiation, all furiously colliding. This picture of the early Universe has been amazingly successful, prompting physicists to push their models as far back in time as they might reach. But how far can they reach? How close to the very origin can scientific models arrive? Could they go all the way to t = 0, the beginning of everything? Or does the notion of time passing lose its meaning as we approach the origin?

This is an old problem, one philosophy sometimes calls the First Cause. If there really is an abrupt beginning of everything, a Universe that becomes itself at some point in the past, it must be due to an uncaused cause — a cause that cannot be preceded by anything else. Any model for the origin of the Universe uses established physical laws and places them within the conceptual framework of physics. Science cannot avoid using something to describe things, and this something presumes the existence of a material substrate. In other words, to see something hatch, we need to start with an egg, and the question is where this egg comes from. It is easy to fall into an endless regression, a problem famously expressed as “turtles all the way down.”

Thus, the building of a workable model for the origin of the Universe does not address the question of why this Universe operates the way it does. Science certainly provides many answers to the workings of nature, but we should not lose sight of its limitations. The question of why there is something rather than nothing should inspire us all to humility.

Mathematically, extrapolating any of the traditional cosmological models to time t = 0 leads to what we call a singularity. Matter density becomes infinite, the curvature of spacetime becomes infinite, and the distance between any two observers goes to zero. Disturbing as this may sound, the existence of a singularity is not to be taken too seriously. It signals the breakdown of general relativity, and of physics as we know it, at the extreme conditions that prevailed during the very first moments of the Universe’s existence. In essence, the singularity signals our ignorance of physics at these very high energy scales. Something else is needed here, and ideas abound. The most promising among them call for a blend of general relativity and quantum mechanics.

Quantum fuzziness in the early Universe

The most dramatic effect from quantum mechanics is an intrinsic fuzziness of matter that manifests itself at atomic and subatomic distances. Close to the Big Bang singularity, the whole geometry of the Universe is to be treated by quantum mechanics, and as such, the very concepts of space and time become blurry. It may be that quantum mechanics will blunt the sharpness of the singularity by making it fuzzy.

Scientists monitored the brains of 4dying patients.Here's what they foundThere have been many attempts to marry Einstein’s general relativity with quantum mechanics, but so far their promise far outpaces their success. Some of the best minds in theoretical physics are at this moment very busy trying to make this marriage work. As all authors working in this field should agree, any claim to understand physical conditions near the singularity must be met with substantial skepticism. Yet we push forward. We must try to obtain at least some information about the peculiar physics that dominated the beginnings of the Universe.

In 1973, Edward Tryon, then at Columbia University, proposed a pioneering idea of how to apply quantum mechanics to the beginning of the Universe. Tryon suggested that quantum fuzziness does not only occur when measuring positions and velocities, but also applies to measurements of energy and time. In the world of the very small, it is possible to violate the law of conservation of energy for very short times, Tryon proposed, even if the net energy of the Universe is zero.

This is not as crazy as it seems. Think of a billiard ball lying quietly on the ground. If it is not moving, it has no kinetic energy. If we measure gravitational potential energy from the ground up, it also has no potential energy. The ball rests at a zero-energy state. Now turn the ball into an electron. According to Heisenberg’s uncertainty principle, we cannot localize an electron and tell its velocity simultaneously. The fuzziness inherent in the electron prohibits that.

“Nothing” is full of possibilities

Thus, in quantum mechanics, there is no zero-energy state. There is only the lowest possible energy state of a system, its ground state. Now, if there is an inherent uncertainty in the energy of a system, then the energy of the ground state can fluctuate. If we call this ground state a quantum vacuum, it follows that the quantum vacuum always has some structure to it. There is no such thing as a true vacuum in the sense of complete emptiness. Quantum mechanics forbids nothingness.

If there are energy fluctuations in a quantum vacuum, very interesting things can happen. For example, the E = mc2 relation tells us that energy and matter are interconvertible. A vacuum energy fluctuation can be converted into particles of matter. Sounds weird? Maybe, but it happens all the time. These particles are called virtual particles, living a fleeting existence before plunging back into the ever-busy quantum vacuum.

Tryon extrapolated the idea of quantum fluctuations to the Universe as a whole. He reasoned that if all that existed was a quantum vacuum, a bubble-like energy fluctuation out of this vacuum could have given rise to the Universe. Tryon proposed that the whole Universe is the result of a vacuum fluctuation, originating from what we could call quantum nothingness.

Tryon’s proposal falls into the category of universes with a beginning, but created out of nothing. However, nothingness here, as well as in all the other examples of quantum-created universes that followed Tryon’s inspiring idea, must be understood in terms of quantum mechanical nothingness, and not from an absolute nothingness that translates to complete emptiness. In physics you simply cannot get something out of nothing. Creation ex nihilo is not the way of nature.


Time is an Entropic System - To Go Back In Time is to Reverse the Second Law of Thermodynamics

 


More Accurate Clocks Unleash More Disorder in The Universe, Physicists Say

author logo
BEN TURNER, LIVE SCIENCE
18 MAY 2021

What's the price of an accurate clock? Entropy, a new study has revealed.

Entropy – or disorder – is created every time a clock ticks. Now scientists working with a tiny clock have proven a simple relationship: The more accurate a clock runs, the more entropy it generates.

"If you want your clock to be more accurate, you've got to pay for it," study co-author Natalia Ares, a physicist at the University of Oxford, told Live Science. "Every time we measure time, we are increasing the Universe's entropy."

As we go forward in time, the second law of thermodynamics states that the entropy of a system must increase. Known as the "arrow of time", entropy is one of the few quantities in physics that sets time to go in a particular direction – from the past, where entropy was low, to the future, where it will be high.

This tendency for disorder to grow in the Universe explains many things, such as why it's easier to mix ingredients together than separate them out, or why headphone wires get so intricately tangled together in pants pockets. It's also through this growing disorder that entropy is wedded so intimately to our sense of time.

A famous scene in Kurt Vonnegut's novel Slaughterhouse-Five demonstrates how differently entropy makes one direction of time look to the other by playing World War II in reverse: Bullets are sucked from wounded men; fires are shrunk, gathered into bombs, stacked in neat rows, and separated into composite minerals; and the reversed arrow of time undoes the disorder and devastation of war.

This intimate connection between time and entropy has fascinated scientists for decades. Machines, such as clocks, also produce entropy in the form of heat dissipated to their surroundings.

Physicists have been able to prove that a tiny quantum clock – a type of atomic clock that uses laser-cooled atoms that jump at highly regular intervals – creates more disorder the more accurately it measures time.

But until now, it has been very difficult to prove that larger, more mechanically complex clocks create more entropy the more accurate they get, even if the idea sounds good in theory.

"Clocks are in some way like little steam engines – you need to put work into them to measure time," Ares said, where the "work is the energy transfer needed to make mechanical devices like clocks run.

"In order to get that regular tick, tick, tick, you have to get the machine going. That means you need to invest in entropy production."

To test this idea, the researchers built a simplified clock made up of a 50-nanometer-thick, 1.5-millimeter-long membrane stretched between two tiny posts that they vibrated with pulses of electricity.

By counting every flex up and down as a tick, the team showed that more powerful electrical signals made the clock tick more regularly and accurately, but at the cost of adding more heat – and therefore more entropy – to the system.

Seeing this relationship between entropy and accuracy play out in a device much larger than a quantum clock has given the researchers confidence that their findings could be universal.

Perhaps if clocks didn't produce any entropy, they'd be just as likely to run backwards as they do forwards, and the more entropy they generate the more they're protected from stutters and backwards fluctuations.

"We don't know for certain yet, but what we've found – for both our clock and for quantum clocks – is that there's a proportional relationship between accuracy and entropy," Ares said. "It might not always be a linear relationship for other clocks, but it does look like the accuracy is bounded by the laws of thermodynamics."

Aside from being useful for designing clocks and other devices in the future, the researchers view their findings as laying the groundwork for further exploration of how the large scale laws of thermodynamics apply to tiny nanosized devices.

"We now have so much control over these tiny devices, and are able to measure them with so much precision, that we're rediscovering thermodynamics at a completely new scale." Ares said. "It's like the Industrial Revolution at the nanoscale."

The researchers published their findings May 6 in the journal Physical Review X.