Quotes & Sayings


We, and creation itself, actualize the possibilities of the God who sustains the world, towards becoming in the world in a fuller, more deeper way. - R.E. Slater

There is urgency in coming to see the world as a web of interrelated processes of which we are integral parts, so that all of our choices and actions have [consequential effects upon] the world around us. - Process Metaphysician Alfred North Whitehead

Kurt Gödel's Incompleteness Theorem says (i) all closed systems are unprovable within themselves and, that (ii) all open systems are rightly understood as incomplete. - R.E. Slater

The most true thing about you is what God has said to you in Christ, "You are My Beloved." - Tripp Fuller

The God among us is the God who refuses to be God without us, so great is God's Love. - Tripp Fuller

According to some Christian outlooks we were made for another world. Perhaps, rather, we were made for this world to recreate, reclaim, redeem, and renew unto God's future aspiration by the power of His Spirit. - R.E. Slater

Our eschatological ethos is to love. To stand with those who are oppressed. To stand against those who are oppressing. It is that simple. Love is our only calling and Christian Hope. - R.E. Slater

Secularization theory has been massively falsified. We don't live in an age of secularity. We live in an age of explosive, pervasive religiosity... an age of religious pluralism. - Peter L. Berger

Exploring the edge of life and faith in a post-everything world. - Todd Littleton

I don't need another reason to believe, your love is all around for me to see. – Anon

Thou art our need; and in giving us more of thyself thou givest us all. - Khalil Gibran, Prayer XXIII

Be careful what you pretend to be. You become what you pretend to be. - Kurt Vonnegut

Religious beliefs, far from being primary, are often shaped and adjusted by our social goals. - Jim Forest

We become who we are by what we believe and can justify. - R.E. Slater

People, even more than things, need to be restored, renewed, revived, reclaimed, and redeemed; never throw out anyone. – Anon

Certainly, God's love has made fools of us all. - R.E. Slater

An apocalyptic Christian faith doesn't wait for Jesus to come, but for Jesus to become in our midst. - R.E. Slater

Christian belief in God begins with the cross and resurrection of Jesus, not with rational apologetics. - Eberhard Jüngel, Jürgen Moltmann

Our knowledge of God is through the 'I-Thou' encounter, not in finding God at the end of a syllogism or argument. There is a grave danger in any Christian treatment of God as an object. The God of Jesus Christ and Scripture is irreducibly subject and never made as an object, a force, a power, or a principle that can be manipulated. - Emil Brunner

“Ehyeh Asher Ehyeh” means "I will be that who I have yet to become." - God (Ex 3.14) or, conversely, “I AM who I AM Becoming.”

Our job is to love others without stopping to inquire whether or not they are worthy. - Thomas Merton

The church is God's world-changing social experiment of bringing unlikes and differents to the Eucharist/Communion table to share life with one another as a new kind of family. When this happens, we show to the world what love, justice, peace, reconciliation, and life together is designed by God to be. The church is God's show-and-tell for the world to see how God wants us to live as a blended, global, polypluralistic family united with one will, by one Lord, and baptized by one Spirit. – Anon

The cross that is planted at the heart of the history of the world cannot be uprooted. - Jacques Ellul

The Unity in whose loving presence the universe unfolds is inside each person as a call to welcome the stranger, protect animals and the earth, respect the dignity of each person, think new thoughts, and help bring about ecological civilizations. - John Cobb & Farhan A. Shah

If you board the wrong train it is of no use running along the corridors of the train in the other direction. - Dietrich Bonhoeffer

God's justice is restorative rather than punitive; His discipline is merciful rather than punishing; His power is made perfect in weakness; and His grace is sufficient for all. – Anon

Our little [biblical] systems have their day; they have their day and cease to be. They are but broken lights of Thee, and Thou, O God art more than they. - Alfred Lord Tennyson

We can’t control God; God is uncontrollable. God can’t control us; God’s love is uncontrolling! - Thomas Jay Oord

Life in perspective but always in process... as we are relational beings in process to one another, so life events are in process in relation to each event... as God is to Self, is to world, is to us... like Father, like sons and daughters, like events... life in process yet always in perspective. - R.E. Slater

To promote societal transition to sustainable ways of living and a global society founded on a shared ethical framework which includes respect and care for the community of life, ecological integrity, universal human rights, respect for diversity, economic justice, democracy, and a culture of peace. - The Earth Charter Mission Statement

Christian humanism is the belief that human freedom, individual conscience, and unencumbered rational inquiry are compatible with the practice of Christianity or even intrinsic in its doctrine. It represents a philosophical union of Christian faith and classical humanist principles. - Scott Postma

It is never wise to have a self-appointed religious institution determine a nation's moral code. The opportunities for moral compromise and failure are high; the moral codes and creeds assuredly racist, discriminatory, or subjectively and religiously defined; and the pronouncement of inhumanitarian political objectives quite predictable. - R.E. Slater

God's love must both center and define the Christian faith and all religious or human faiths seeking human and ecological balance in worlds of subtraction, harm, tragedy, and evil. - R.E. Slater

In Whitehead’s process ontology, we can think of the experiential ground of reality as an eternal pulse whereby what is objectively public in one moment becomes subjectively prehended in the next, and whereby the subject that emerges from its feelings then perishes into public expression as an object (or “superject”) aiming for novelty. There is a rhythm of Being between object and subject, not an ontological division. This rhythm powers the creative growth of the universe from one occasion of experience to the next. This is the Whiteheadian mantra: “The many become one and are increased by one.” - Matthew Segall

Without Love there is no Truth. And True Truth is always Loving. There is no dichotomy between these terms but only seamless integration. This is the premier centering focus of a Processual Theology of Love. - R.E. Slater

-----

Note: Generally I do not respond to commentary. I may read the comments but wish to reserve my time to write (or write off the comments I read). Instead, I'd like to see our community help one another and in the helping encourage and exhort each of us towards Christian love in Christ Jesus our Lord and Savior. - re slater

Monday, April 1, 2013

The Quantum Evolution of the Early Universe



 
[Excerpt from Everything Quantum...]
 
What do you think caused the Big Bang? What were the physical properties of the Universe when it was (10 ^ -43) one hundred tredecillionth of a second old?
 
The Era of Galaxies
 
The formal question is a bit more vauge so let's explore the latter first. For the past few billion years we have lived in the era of galaxies. The era of galaxies consist of the complex causal phenomenon in which energy and mass are interchangeable, hence the equation E = MC^2. This interchangeable energy produces massive particles such as fermions (which are quarks and leptons) and bosons which accelerate through the Higgs Field and thereby gain mass.
 
Exchange particles such as gluons (which hold protons and neutrons in atomic nuclei together), photons (which produces charge for the electrons in atomic orbitals thereby creating the matter necessary for chemistry & biology) and gravitons (which holds together large scale structures such as planets, stars, galaxies and superclusters) are not affected by the Higgs Field.
 
Yet the exchange particle that deals with nuclear reactions (W & Z bosons) is affected by the Higgs Field thereby affecting the rate of radioactivity. This complex causal structure of matter has produced everything we recognize in the universe today.
 
 
Fermions
 
The Standard Model includes 12 elementary particles of spin-½ known as fermions. According to the spin-statistics theorem, fermions respect the Pauli exclusion principle. Each fermion has a corresponding antiparticle.
 
The fermions of the Standard Model are classified according to how they interact (or equivalently, by what charges they carry). There are six quarks (up, down, charm, strange, top, bottom), and six leptons (electron, electron neutrino, muon, muon neutrino, tau, tau neutrino). Pairs from each classification are grouped together to form a generation, with corresponding particles exhibiting similar physical behavior (see table).
 
The defining property of the quarks is that they carry color charge, and hence, interact via the strong interaction. A phenomenon called color confinement results in quarks being perpetually (or at least since very soon after the start of the Big Bang) bound to one another, forming color-neutral composite particles (hadrons) containing either a quark and an antiquark (mesons) or three quarks (baryons). The familiar proton and the neutron are the two baryons having the smallest mass. Quarks also carry electric charge and weak isospin. Hence they interact with other fermions both electromagnetically and via the weak interaction.
 
The remaining six fermions do not carry colour charge and are called leptons. The three neutrinos do not carry electric charge either, so their motion is directly influenced only by the weak nuclear force, which makes them notoriously difficult to detect. However, by virtue of carrying an electric charge, the electron, muon, and tau all interact electromagnetically.
 
Each member of a generation has greater mass than the corresponding particles of lower generations. The first generation charged particles do not decay; hence all ordinary (baryonic) matter is made of such particles. Specifically, all atoms consist of electrons orbiting atomic nuclei ultimately constituted of up and down quarks. Second and third generations charged particles, on the other hand, decay with very short half lives, and are observed only in very high-energy environments. Neutrinos of all generations also do not decay, and pervade the universe, but rarely interact with baryonic matter.
 
 
Particle classifications
 
Mesons are bosons and hadrons; and baryons are hadrons and fermions. In particle physics, a hadron /ˈhædrɒn/ (Greek: ἁδρός, hadrós, "stout, thick") is a composite particle made of quarks held together by the strong force (in the same way as atoms and molecules are held together by the electromagnetic force). Hadrons are categorized into two families: baryons, such as protons and neutrons, made of three quarks and mesons, such as pions, made of one quark and one antiquark.
 
Gauge bosons (see Addendum: "Gauge Theory" below)

In the Standard Model, gauge bosons are defined as force carriers that mediate the strong, weak, and electromagnetic fundamental interactions.

Interactions in physics are the ways that particles influence other particles. At a macroscopic level, electromagnetism allows particles to interact with one another via electric and magnetic fields, and gravitation allows particles with mass to attract one another in accordance with Einstein's theory of general relativity. The Standard Model explains such forces as resulting from matter particles exchanging other particles, known as force mediating particles (strictly speaking, this is only so if interpreting literally what is actually an approximation method known as perturbation theory).

When a force-mediating particle is exchanged, at a macroscopic level the effect is equivalent to a force influencing both of them, and the particle is therefore said to have mediated (i.e., been the agent of) that force. The Feynman diagram calculations, which are a graphical representation of the perturbation theory approximation, invoke "force mediating particles", and when applied to analyze high-energy scattering experiments are in reasonable agreement with the data. However, perturbation theory (and with it the concept of a "force-mediating particle") fails in other situations. These include low-energy quantum chromodynamics, bound states, and solitons.

The gauge bosons of the Standard Model all have spin (as do matter particles). The value of the spin is 1, making them bosons. As a result, they do not follow the Pauli exclusion principle that constrains fermions: thus bosons (e.g. photons) do not have a theoretical limit on their spatial density (number per volume). The different types of gauge bosons are described below.
  • Photons mediate the electromagnetic force between electrically charged particles. The photon is massless and is well-described by the theory of quantum electrodynamics.
  •  
  • The W+, W, and Z gauge bosons mediate the weak interactions between particles of different flavors (all quarks and leptons). They are massive, with the Z being more massive than the W±. The weak interactions involving the W± exclusively act on left-handed particles and right-handed antiparticles only. Furthermore, the W± carries an electric charge of +1 and −1 and couples to the electromagnetic interaction. The electrically neutral Z boson interacts with both left-handed particles and antiparticles. These three gauge bosons along with the photons are grouped together, as collectively mediating the electroweak interaction.
     
  • The eight gluons mediate the strong interactions between color charged particles (the quarks). Gluons are massless. The eightfold multiplicity of gluons is labeled by a combination of color and anticolor charge (e.g. red–antigreen). Because the gluons have an effective color charge, they can also interact among themselves. The gluons and their interactions are described by the theory of quantum chromodynamics.

The interactions between all the particles described by the Standard Model are summarized by the diagrams on the right of this section.

Higgs boson
http://en.wikipedia.org/wiki/Standard_model_of_particle_physics

The Higgs particle is a massive scalar elementary particle theorized by Robert Brout, François Englert, Peter Higgs, Gerald Guralnik, C. R. Hagen, and Tom Kibble in 1964 (see 1964 PRL symmetry breaking papers) and is a key building block in the Standard Model. It has no intrinsic spin, and for that reason is classified as a boson (like the gauge bosons, which have integer spin).

The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson would explain why the photon has no mass, while the W and Z bosons are very heavy. Elementary particle masses, and the differences between electromagnetism (mediated by the photon) and the weak force (mediated by the W and Z bosons), are critical to many aspects of the structure of microscopic (and hence macroscopic) matter. In electroweak theory, the Higgs boson generates the masses of the leptons (electron, muon, and tau) and quarks. As the Higgs boson is massive, it must interact with itself.

Because the Higgs boson is a very massive particle and also decays almost immediately when created, only a very high energy particle accelerator can observe and record it. Experiments to confirm and determine the nature of the Higgs boson using the Large Hadron Collider (LHC) at CERN began in early 2010, and were performed at Fermilab's Tevatron until its closure in late 2011. Mathematical consistency of the Standard Model requires that any mechanism capable of generating the masses of elementary particles become visible at energies above 1.4 TeV; therefore, the LHC (designed to collide two 7 to 8 TeV proton beams) was built to answer the question of whether the Higgs boson actually exists.

On 4 July 2012, the two main experiments at the LHC (ATLAS and CMS) both reported independently that they found a new particle with a mass of about 125 GeV/c2 (about 133 proton masses, on the order of 10−25 kg), which is "consistent with the Higgs boson." Although it has several properties similar to the predicted "simplest" Higgs, they acknowledged that further work would be needed to conclude that it is indeed the Higgs boson, and exactly which version of the Standard Model Higgs is best supported if confirmed.



Earlier Eras

The Era of Atoms saw the formation of atoms and the release of photons to form background radiation. During this time mega structures began to form from the plasma abounding. This occurred when the universe was 300,000 years old.

When the universe was around 3 minutes old the temperature was around 10^9 kelvin. This era was known as the "Era of Nuclei" which consisted of the hot plasma of ionized hydrogen nuclei, helium nuclei, traces of lithium nuclei and free electrons. This era lasted for around 380,000 years.

When the universe was 0.001 of a second old it was compiled of protons and neutrons which was left over from a previous era thereby fusing into heavier nuclei. This was known as the "Era of Nucleosynthesis".

The Particle Era held powerful radiation that filled the universe spontaneously produced matter and antimatter particles that almost immediately annihilated each other. Here, the electromagnetic and electroweak forces became distinct. Around this time the Universe was 10^ -10 of a second old and the temperature was 10^15 kelvin.

At 10^-35 seconds The Electroweak Era began marking a very important transition in the physical universe (it is called the "Electroweak Era" because Scientist believe that at this time the electromagnetic force and weak nuclear forces were one unified force).  The temperature at this time was 10^15 kelvin.

The GUT Era (which is an acronym for Grand Unified Theories) is a bit more mysterious and ambiguous for Scientist. During this time the universe was around 10^ - 43 of a second old and the temperture was around 10 ^ 29 kelvin which means this era only lasted for a trillion-trillion-trillionth of a second.

And lastly there was the Planck Era which was when the universe was older than (10 ^ -43) one hundred tredecillionth of a second old and temperatures were above 10^32 kelvin. According to quantum mechanics there was a plethora of energy fluctuations that produced a rapidly changing gravitational field that randomly warped the spacetime continuum.

The Planck Era's random fluctuations are so stochastic that it causes discrepancies between our scientific knowledge of General Relativity and Quantum Mechanics (similarly to the mathematical discrepancies that appear when you surpass the event horizon and enter the singularity of a black hole). Perhaps Heterotic String Theory can answer the question of the "Planck Era" and the beginning of the universe. This is an area where bosonic string and superstring theory are hybridized. By asking the question what happened before the Big Bang brings us to the question of multi-universes (multiverses) and how they are birthed and affect one another.

In conclusion, What do you think cause the Big Bang? What were the physical properties of the Universe when it was in the Planck Era? And moreover, Do you think there was something before the big bang?

- Excerpt from Everything Quantum


Comments

- The instant of the Big Bang was a symmetry breaking event. Time, now released, allowed the progression of events that followed. None of the fundamental forces were in operation and unbounded, Energy and Matter were equivalent, the speed of light, c, was not even yet a property of the Universe. Prior to this existed elementary particles whose quantum states decayed into the Universe that we presently exist in. An easy to understand analogy is a star going nova, it's core collapsing into a black hole, and our Universe's quantum event structure may be postulated from within this new singularity of spacetime.

I've been privy, as of late, towards the idea of the cyclic Universe theory, either through rotating membranes or quantum gravity (the latter more than the former). If you look at all the cycles found in just earth alone, it seems logical to me that the pattern could be extrapolated to the rest of the Universe. And though I'd say Quantum Fluctuations in a preset vacuum are probably a cause, it doesn't mean I don't think something spiritual was possibly behind it. And with that, I'd say that Spiritual Entity is what existed before, and maybe the Universe formed FROM it? But thats not science, thats philosophy and religion. Really, a lot of things are up in the air for me, I just have preferences and speculations.


Addendum: Gauge Theory
[Excerpt from Everything Quantum...]

Phases of gauge theories

One of the most fundamental questions we can ask about a given gauge theory is its phase diagram. In the Standard Model, we observe three fundamentally different types of behavior:
QCD is in a confined phase at zero temperature, while the electroweak sector of the Standard Model combines Coulomb and Higgs phases.

Our current understanding of the phase structure of gauge theories owes much to the modern theory of phase transitions and critical phenomena, but has developed into a subject of extensive study. After reviewing some fundamental concepts of phase transitions and finite-temperature gauge theories, we discuss some recent work that broadly extends our knowledge of the mechanisms that determine the phase structure of gauge theories.

A new class of models with a rich phase structure has been discovered, generalizing our understanding of the confinement–deconfinement transition in finite-temperature gauge theories. Models in this class have spacetime topologies with one or more compact directions. On R3 × S1, the addition of double-trace deformations or periodic adjoint fermions to a gauge theory can yield a confined phase in the region where the S1 circumference L is small, so that the coupling constant is small, and semiclassical methods are applicable.

In this region, Euclidean monopole solutions, which are constituents of finite-temperature instantons, play a crucial role in the calculation of a non-perturbative string tension. We review the techniques used to analyze this new class of models and the results obtained so far, as well as their application to finite-temperature phase structure, conformal phases of gauge theories and the large-N limit.

For further References see Wikipedia - Quantum Field Theory




For More Discussion on Creational Quantum Evolution -
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Friday, March 29, 2013

Colton Dixon, "This Is Who I Am" - Selections, Tours, Interviews














Behind the Scenes - On Tour with Colton Dixon
Summer 2013




Colton Dixon - Scars - Miracle Tour NY 2013




Colton Dixon Sings - You Are - The 700 Club 3/20/13




Colton Dixon - "Never Gone" (Official Lyric Video)




Colton Dixon - Jesus Paid it All - Passion 2013




Colton Dixon sa The 700 Club Asia
Tour Interview





Colton Dixon American Idol Interview w/Idology ENTV
Season 2012





Colton Dixon Performs "Love Has Come For Me"







 



 

Colton Dixon Finds His Calling In Christian Rock

by Nicole Pajer
April 4, 2013

Bubbling Under: 'American Idol's' Colton Dixon 'Never Gone' Debuts
Bubbling Under: 'American Idol's' Colton Dixon 'Never Gone' Debuts

Finishing seventh on last year’s season of “American Idol” hasn’t stopped Colton Dixon from living out his dream. The 22-year-old Tennessee native has carved a niche for himself and is quickly becoming a staple in the Christian rock market.

Dixon recently returned to the “Idol” stage where he debuted his latest single “Love Has Come for Me.” The track is lifted from his debut album, “A Messenger,” released Jan. 29. The set continues to perform well on the sales charts. After nine weeks, it has a peak of No. 15 on The Billboard 200 and is currently in the top 50. Dixon’s previous single “You Are” is at No. 11 on the Christian Songs chart in its 24th week.

Following the latest “Idol” performance, www.Billboard.com caught up with Dixon who explained that pursuing the Christian rock path was a natural choice for him.

“I've been listening to Christian music since I was little. I grew up with it,” he said. Dixon added that he loves music with a message and is therefore drawn to Christian rock tunes. “I'm very happy that I was accepted well into that market. You never know…being an “Idol” and going into Christian music – I've seen it work and I've seen it not work. I'm happy that it did.”

Though Dixon is in the midst of promoting his initial release, it hasn’t stopped him from thinking about future songs. “There are endless creative juices going on inside my brain so I’m excited to get that down on paper.” He tells Billboard.com that his new material will be a continuation of the theme of his latest single. “Love and what that means… I think a lot of people look for love in the wrong places at times. So it is about finding the right venue for your love. We’ll see where that idea goes.”

Dixon also touched on the changes he’s experienced in his life since exiting the 'Idol' stage. “A lot has happened in the last year. It's hard for me to wrap my head around a lot of it but I think the coolest thing about all of this is just having people appreciate what you do musically. It’s so cool to put out a record and see people buying it and see people on Twitter and Facebook say ‘Oh, man, I really like this song’ or ‘This song is my favorite.’ Or the best to me is, ‘Man, this song really encourages me in this area."

Before rushing-off again to hit the road with Third Day, the “Idol” alum gave Billboard a behind-the-scenes look at the realities of trekking across the country with his band. “Being on a tour bus is not as glamorous as I thought it would be,” he jokes. “There is no shower, there is no ‘number two,’ but it’s still a lot of fun.”



Wednesday, March 27, 2013

How It All Works - Quantum Particles, Supersymmetries, and M-Theory

 
Standard Model of elementary particles

M-Theory and the Higgs boson
 
The discovery of a potential Higgs boson particle plays a crucial role in super-symmetry - just one more of the ingredients needed to provide evidence of the M-Theory of strings - Energetic pieces of threads may finally explain all four fundamental forces of nature (photons, bosons, gluons, gravitons) and our perceived reality with space, time, matter and motion.
 
The basic elements of this so far are purely mathematical concepts known as 'strings' and 'membranes' — subatomic one-dimensional energy threads and built areas.
 
The mere vibrations of tiny strings and membranes, only about a hundredth of a billionth of a billionth of the size of an atomic nucleus generate everything - all elements of the periodic system, the vacuum of space and progressive time.
 
Acceptance of this 'theory of everything' relies on the super-symmetry of forces and matter.
 
Particle physicists need proof for super-symmetry as well as to explain their contemporary model of weakly interacting massive particles (WIMPS) that are currently supposed to form extensive, galaxies stabilizing dark matter halos, apparently providing the majority of matter in the universe.
 
The announcement by CERN in 2012 that there is a high probability that the new particle they've found is the Higgs boson is an important step toward doing this.
 
 
Enter the 11th dimension
 
String theories, which emerged in the 1980s, postulate that 10 dimensions exist in nature. Only Einstein's three-dimensional space and one-dimensional time are 'rolled out', the other six spatial dimensions are 'curled up' and invisible.
 
Varying approaches led to different mathematical solutions and descriptions. Five variant approaches seemed to be promising, but did not produce suitable solutions for all existing elementary particles, space, time, and quantum gravity.
 
Then in 1994, the so-called M-Theory caused a second superstring revolution. It attempts to unify all five previously developed theories, introducing an 11th dimension and a staggering amount of mathematical solutions. The M-Theory considers those five set-ups to describe the same, but from different perspectives.
 
M-Theory formulates relationships between each of the five previous theories, calling those relationships 'dualities'. Each duality provides a mathematical solution to convert one string theory into another. The 11th dimension is supposed to acquire sufficient energy to infinitely expand.
 
One distinctive feature of the M-theory is the assumed existence of multidimensional spaces within any single point of space and time. Endless tring solutions are the result, creating far too many variations to find the suitable ones randomly; but powerful computes may help scienticsts find feasible results.
 
 
Multiverse Floating Membranes
 
String specialists ponder on a 'floating membrane' and consider the existence of our universe along such a membrane.
 
Infinite parallel universes accompany our universe with their own floating membranes. Leakages between those universes lead to a mathematically feasible concept of gravity.
 
 
 
 
WIMPS (Weakly Interacting Massive Particles)
 
All elementary particles that have been observed are either fermions (matter) or forces. Fermions are supposed to build all known types of matter. And elementary forces are either photons, W- and Z- bosons, gluons, or gravitons: 
  • Photons carry the forces of the electromagnetic fields
  • W- and Z-bosons mediate a weak force of radioactive decay and neutrino interactions
  • Gluons the strong force in the atomic nuclei
  • Gravitons (quantum gravity)
A feasible solution for quantum gravity would be necessary to cover all four fundamental forces of nature (photons, bosons, gluons, gravitons).
 
The bosons challenge string physicists most. Currently they need 26 dimensions for a boson string theory - meaning 15 dimensions have been hypothesized on top of the 11-dimensional M-Theory.
 
The Higgs quantum field and the Higgs boson play a crucial role in providing proof of super-symmetry because they give elementary particles a mass by spontaneous breaking of electroweak symmetry. The Higgs boson is an excitation of the Higgs quantum background field above its ground state.
 
The basic theories for all elementary particles require getting accustomed to because each material particle is described as a distinguishable excitation state of basic energy strings and areas with quantum mechanical aspects.
 
The classical observations of nature completely fade in the imaginations of theoretical string physicists. The quantised approach to all forces and energies of nature already challenges these scientists from the very beginning. For example, look at a simple electron: like any photon, any electron either behaves as concentrated particle or spreading wave, only depending on the set-up of the experiment. This peculiarity has been called the dualism of wave and particle.
 
Quantum physicists handle this remaining inexplicable contradiction by the superposition of several possible states and conditions. There is only a probability that one of these states and conditions takes place. The whole of possible states is mathematically expressed by so-called 'wave' functions. Any single result of an observation appears accidentally. This way, quantum physics can predict atomic processes with extraordinary high precision.
 
 
 
Rotational symmetry
 
A 'Theory of Everything' also requires rotational symmetry concepts of space-time. Rotational symmetry describes a successive exchange of physical quantities and states by energy impacts, for example of a length into time, time into energy density, energy density into time compression and, closing the circle, back into a space length.
 
Einstein described these rotational features in his theory of relativity by energy tensors and rotary functions. This circular exchange chain of physical quantities and states has been proven experimentally, but now needs completion with additional dimensions.
 
Quantum physics enters this picture by innovative time compression, representing the opposite function of time dilation.
 
Cosmology will strongly influence further development of string theory and the theory of everything.
 
We postulate that the accelerating expansion of the universe, explained by dark energy, is being driven by scalar fields. Fields of this kind serve as a description of changing super-symmetries that have their origin in one single type of initial force. These fields determine the development of the hierarchy of today's fundamental forces of nature. Rotational space-time symmetry accommodates the types of scalar fields that are needed to explain the peculiar negative pressure and adiabatic nature of dark energy. It explains the location and nature of the Higgs quantum field as well.
 
The M-Theory may soon culminate in the successful programming of powerful, quantum computers, but only the experimental proofs of super-symmetry and the identification of the circular exchange chain of parameters will open a new chapter in the contemporary standard model of physics.
 
 
For More Information begin here with Wikipedia
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monday, March 25, 2013

Best Coin Ever Spent...





 Best Coin Ever Spent [hd]




Three Coins in a Fountain
by R.E. Slater

I put three coins in a templed fountain,
wishing each farthing fare thee well,
content before its glittering, flowing waters,
against a clearing sky’s dappled azured blue.

With the first I wished for wonder’s contentment,
the second a lifetime filled with joy,
and third for love’s sublime abundance,
upon all my days this jealous earth.

Thence followed to my greatest pleasure,
a golden parade singing finest tunes,
whilst playing fine instruments in regaling colours,
filling with boys and girls each gaily dressed,
heralding fair golden lockets and blazing vests.

Bright with happy, joyous faces beaming,
clasping flashing golden harps their breasts,
marching to brassy drums’ superfluous beats,
beneath lurid flowing melodies soaring high.

So fine a parade that I forgot my wishes,
feeling blessed with warmth and happiness,
lasting all my days until evening’s hours,
when darkness finally came to rest.

And there before the golden fountain,
I sought again each coin I tossed,
to give each one a little lad beside me,
filling all his days and waking hours,
like as mine upon a fountain blest.


R.E. Slater
March 25, 2013

@copyright R.E. Slater Publications
all rights reserved