Friday, April 15, 2022

Easter's 15 Greatest Classical Pieces




EASTER MUSIC: THE 15 GREATEST CLASSICAL PIECES
18 April 2019, 16:01 | Updated: 18 April 2019, 21:23


Easter hymns and sacred music favourites tell the story of Jesus.

From Bach’s Passion music to Handel’s Messiah, here are our top pieces of music that depict the final days of Jesus and his resurrection.

With so much classical music on offer on the subject of Easter and Jesus on the cross, here are our favourite pieces of music that are perfect for Easter weekend.


The Easter Hymn from Pietro Mascagni's opera Cavalleria Rusticana.

No matter what we believe in, it’s hard to deny the beauty behind this piece – in its music and meaning. It is Easter morning in a 19th-century Italian village. Santuzza’s character sings the Easter Hymn in this excerpt, also referred to as both “Regina Coeli” and “Inneggiano”. She is singing to herself as her Sicilian village takes part in Easter festivities.

“Inneggiamo, il Signor non è morto” — “We rejoice that our Savior is living!”

We rejoice that our Savior is living!
He all-glorious arose from the dead;
Joys of heaven the Lord to us giving,
All the sorrows of darkness are fled!

Listen here (6 minute listen), the German soprano Julia Varady (singing the role of Santuzza) with The London Opera Chorus and The National Philharmonic conducted by Gianandrea Gavazzeni


EASTER HYMN (REGINA COELI)
from CAVALLERIA RUSTICANA - Julia Varady
Nov 25, 2013

Julia Varady with The National Philharmonic conducted by Gianandrea Gavazzeni and The London Opera Chorus directed by Terry Edwards. "Sto cercando di individuare le chiese e loro posizioni. Ho perso i miei appunti originali e apprezzerei il vostro aiuto." - SICILY.

Time
00.00  Messina The Church of Christ the King 
00.17   Palermo Cathedral
00.29  Chiesa di S. Guiseppe (XV11) - Taormina
00.40  Chiesa Madre - Augusta
00.59  The Church of Christ the King - Messina
01.19   Modica, S. Maria del Soccorso 
01.37  The Cathedral of Syracuse (Duomo di Siracusa)
01.53  The Cathedral of Syracuse (Duomo di Siracusa)
02.20  Chiesa di S. Maria - San Piero Patti
02.27  Monreale Cathedral
03.02  Taormina, San Giussepe
03.19  Palermo, Santa Caterina
03.50  Palatine chapel of St Peter and St Paul, Palermo.
04.02   Palermo, Santa Caterina
04.23   Casteltermi
04.36  
04.50  Messina 12th Century Church of Annunziata dei Catalani
05.07  Fiumefreddo (Ct) - La Chiesa parrocchiale


Regina Coeli - Pietro Mascagni
Jan 3, 2016


Regina Coeli - Pietro Mascagni da Cavalleria Rusticana
Atri - Basilica Cattedrale - 17 dicembre 2015
direttore: PASQUALE VELENO
Concerto Giovane Orchestra d’Abruzzo, Skyline Brass Ensemble, Coro dell’Accademia di Pescara, Coro Vox Nova di Fabriano, Coro Ventidio Basso di Ascoli Piceno - Laura Toro, soprano - Riccardo della Sciucca, tenore - Davide Filipponi, basso Maestri del coro: Pasquale Veleno, Alberto Signori, Giovanni Farina


Inneggiamo al Signore (Aclamemos al Señor) - subtitulado
Mar 29, 2012


Selección y traducción por P. Pablo Scaratti
Pietro mascagni -Inneggiamo il Signore è risorto - da " Cavalleria Rusticana "
17° Concerto d'Autunno eseguito il giorno 18 ottobre 2008 presso la Chiesa parrocchiale di Gessate -
Direttore : M° Pierangelo Pelucchi
Soprano : Nicoletta Ceruti
Organista : Emilio Brambilla
Organo : Balbiani - Vegezzi - Bossi (se non ricordo male 32 composizioni sonore) anno costruzione : circa 1968
Corale S.s.Pietro & Paolo www.coralegessate.org
Orchestra sinfonica Gaetano Donizetti di Gessate


St. John Passion – Bach

Bach's St. John Passion is the earlier of the two Easter story settings of his that have survived.

It was composed in 1724 for the Good Friday Vespers service that year, setting Chapters 18 and 19 of John’s accounts of the crucifixion to music.


It is well worth sitting down and listening to this work in its entirety if you haven't done so before.


Bach - St John Passion BWV 245 - Van Veldhoven
 Netherlands Bach Society
Apr 10, 2018

The St John Passion, performed by the Nederlands Bach Society for All of Bach, was the first Passion Bach had written as cantor in Leipzig. The Passion story as told in the Gospel of John is different from that told by the other three evangelists – Matthew, Luke and Mark. John’s version places the emphasis on Christ’s divine origin. Throughout his suffering, this divine origin still plays a role and nowhere is Jesus as human as in the other gospels. 
For this performance, we selected a cast of singers under the age of 35. Apart from the leaders, all the orchestra members are also younger than 35. The concert series was preceded by a course of auditions and masterclasses.


St. Matthew Passion – Bach

The monumental St. Matthew Passion is hailed as the greatest setting of the Passion story in Western music but surprisingly, it was not until almost 100 years after its premiere that Bach’s music got the recognition it deserved.

Composed in 1727, it is a setting of sections of St Matthew’s Gospel, designed as part of Good Friday Vespers for the strict Lutheran stronghold of Leipzig. Following its premiere, it received two subsequent performances in 1736 and the 1740s. After that it was not performed again for almost 100 years.


A Fast and Friendly Guide to Bach | Classic FM
Jun 18, 2012

Join Classic FM Drive presenter John Brunning as he takes you on an animated tour of the life of Johann Sebastian Bach - one of music's most sublime creative geniuses.


Messiah – Handel

Although we know this piece from its iconic ‘Hallelujah’ chorus, there is so much more to this essential piece of Easter music.

Since its premiere in 1742, it has been performed by choirs across the world every year since at least 1745.


Handel's Messiah (Easter Concert)
by the Tabernacle Choir & Orchestra
Premiered Mar 26, 2021




The Hallelujah Chorus - Forté Handbell Quartet

Handel began composing the Messiah in 1741, and took a painstaking 14 years to arrive at the version we know today.

Impressive solo arias, like ‘Ev’ry valley shall be exalted’ and ‘Rejoice greatly, O daughter of Zion’ are interspersed with compelling chorus numbers, telling the story of Jesus’ birth, life, death, resurrection, and final victory over sin and death.

The rousing ‘Hallelujah’ chorus is by far the most widely-known section of the work, and audiences tend to stand during performances – a tradition that allegedly began when King George II stood during the chorus at the oratorio’s London debut performance.


Music Classic Handel from Forté Handbell Quartet
Dec 22, 2020




Amazing Grace – John Newton

‘Amazing Grace’ is one of the world’s most recognisable melodies. Not only is it a popular hymn, there are also countless recordings of the song, including Aretha Franklin’s, and Elvis Presley’s have given the song worldwide recognition.

The hymn was first published in 1779 by the English poet and clergyman John Newton. The song shares the message of forgiveness and redemption, an important message to appreciate over Easter.


Aretha Franklin - Amazing Grace (Official Audio)
Feb 10, 2019


The official audio of "Amazing Grace" by Aretha Franklin with James Cleveland and The Southern California Community Choir from the album 'Amazing Grace' (1972). 'Amazing Grace' earned Aretha a Grammy in 1973 for Best Soul Gospel Performance and remains the best selling Gospel album of all time.


Symphony No. 2 (‘Resurrection’) – Mahler

This monumental orchestral work is really quite something to behold.

Up until this point, Mahler shared a confused standpoint on religion, but this symphony became his first piece to establish his view of the beauty of the resurrection.

Mahler was moved to incorporate the line “Rise again, yes, you shall rise again / My dust” as the
opening to the final movement of his second symphony.

Although Mahler was compelled to use the resurrection as subject matter for the symphony, it isn't as straightforward as the title might suggest. This symphony explores life and death in all its light and dark facets.



Mahler: Symphony No. 2 (Resurrection)
May 16, 2008




How Great Thou Art – Carl Boberg

‘How Great Thou Art’ is a traditional Christian hymn based on an anonymous melody and a poem written by Carl Boberg in 1885.

It has previously been voted as the United Kingdom’s favourite hymn, and second on a worldwide ranking, only pipped to the post by ‘Amazing Grace’.


Winchester Cathedral: HOW GREAT THOU ART
Jun 27, 2014

A British Christian Music Programme



Miserere – Allegri

This haunting choral work by Gregorio Allegri sets the Latin text of Miserere mei, Deus (in fact the piece’s full title) from Psalm 51 to music for two choirs.

It’s not certain when Allegri’s Miserere was composed, but we know it was during the reign of Pope Urban VIIII, probably during the 1630s. It would have been used for services in the Sistine Chapel on Holy Wednesday and Good Friday of Holy Week.


Allegri - Miserere mei, Deus
Feb 10, 2011

The magnificent "Miserere mei, Deus" composed by Allegri and here brilliantly performed by the Choir of New College, Oxford.


Russian Easter Festival Overture – Rimsky-Korsakov

This romantic score by Rimsky-Korsakov is a fresh deviation from most choral works associated with religious holidays.

The score is prefaced by two quotations from the Old and New Testaments, and a third written by the composer himself.

The Russian Easter Festival Overture is the composer’s account of an Easter morning service – “not in a domestic chapel, but in a cathedral thronged with people from every walk of life, and with several priests conducting the cathedral service.”


Rimsky-Korsakov - Russian Easter Festival Overture, Op. 36
May 30, 2011


Fledermaus1990
Also known as The Great Russian Easter Overture, is a concert overture written by the Russian composer Nikolai Rimsky-Korsakov between August 1887 and April 1888, and dedicated to the memories of Modest Mussorgsky and Alexander Borodin, two members of the legendary "Mighty Handful".

It is subtitled "Overture on Liturgical Themes". It is the last of the composer's series of three exceptionally brilliant orchestral works, preceded by Capriccio Espagnol and Scheherazade. The work received its premiere in St. Petersburg in late December 1888.

Conductor: Zubin Mehta
Orchestra: Israel Philharmonic Orchestra

Picture: Il'ja Efimovič Repin, Easter Procession in the region of Kursk (1880-1883)


Invictus: A Passion – Howard Goodall

Composer Howard Goodall said of his new work:
“Much of the Passion in general – persecution of the innocent, malevolent authority exerting itself against ideas that threaten and challenge, the power of a peaceful, loving humility in the face of tyranny, the facing-down of fear – holds profound universal resonance for people of many faiths and those of none. It is this universal meaning that my Invictus: A Passion hopes to address, so that [...] it might find relevance with choirs and their audiences or congregations everywhere.”

 

Invictus: A Passion: Invictus
Aug 30, 2018


Christ Church Cathedral Choir
Provided to YouTube by The Orchard Enterprises
Invictus: A Passion: Invictus · Christ Church Cathedral Choir · Howard Goodall · The Lanyer Ensemble · Stephen Darlington · Mark Dobell


Parsifal – Wagner

Wagner's opera Parsifal all takes place on Good Friday. The Good Friday music from Act III of the opera is a standalone work of art in its own right, but if you have a few hours to spare, we'd recommend you listen to this sublime opera in its entirety.


Parsifal - Karfreitagszauber
Good Friday Music - Wagner - Kempe
Sep 30, 2016


moltovivace

Instrumental Karfreitagszauber from Act 3 of
Richard Wagner's opera Parsifal (1882)

Conductor: Rudolf Kempe 
Orchestra: Wiener Philharmoniker (Vienna Philharmonic)

Recorded in 1960, remastered in 1990.

Label: Angel Records
Year released: 1995



The Seven Last Words of Christ – Haydn

The Seven Last Words of Christ, or using its full name The Seven Last Words of Our Saviour on the Cross is an orchestral work composed by Joseph Haydn for the 1786 Good Friday service at Oratorio de la Santa Cueva in Spain.

The composer adapted the music three times – once in 1787 for string quartet, again in 1796 as an oratorio for solo and chorus, and he also approved a solo piano version.


Joseph Haydn - The Seven Last Words of Christ
(Full Concert) (Full HD)
Apr 29, 2012


ClassicalMusicTVHD
The Seven Last Words of Our Saviour On the Cross (German: Die sieben letzten Worte unseres Erlösers am Kreuze) is an orchestral work by Joseph Haydn, commissioned in 1785 or 1786 for the Good Friday service at Cádiz Cathedral in Spain. The composer adapted it in 1787 for string quartet and in 1796 as an oratorio (with both solo and choral vocal forces), and he approved a version for solo piano.

The seven main meditative sections — labelled "sonatas" and all slow — are framed by an Introduction and a speedy "Earthquake" conclusion, for a total of nine movements. Complete all movements.


Easter Oratorio – Bach

It’s no surprise that with a catalogue that includes both of his Passions and the Easter Oratorio, Bach is hailed as one of the finest classical composers of sacred music.

The first version of the work was actually completed as a cantata for Easter Sunday in 1725, but it was later given the Easter Oratorio title in a revived version ten years later.

The Easter Oratorio has four characters assigned to the four voice parts; Simon Peter (tenor), John the Apostle (bass), Mary Magdalene (alto) and Mary Jacobe (soprano).


J.S. Bach - Easter Oratorio, BWV 249
Apr 23, 2011


BachHarmony

The Amsterdam Baroque Choir
The Amsterdam Baroque Orchestra
Ton Koopman



Lamentations of Jeremiah the Prophet – Tallis

This is the first of many settings of The Lamentations of Jeremiah the Prophet by a number of composers.

Thomas Tallis scored the work for five voices – an alto, two tenors and a two basses in the Latin text of the bible used in Tallis’ lifetime.


Thomas Tallis - Lamentations of Jeremiah I
Feb 11, 2010


Thomas Tallis (c. 1505 - 1585):
LAMENTATIONS OF JEREMIAH I
Thomas Tallis was an English organist and composer whose career spanned the reigns of four monarchs and a long period of religious change. He occupies a primary place in anthologies of English church music, and is considered among the most talented of England's early composers.

This is part one of his 'Lamentations of Jeremiah', which sets to music verses 1-2 of Chapter 1 (Book of Lamentations).
0:06 Incipit lamentatio etc
1:13 Aleph. Quomodo sedet etc
3:24 Beth. Plorans ploravit etc
6:09 Ierusalem, convertere etc
Incipit lamentatio Ieremiae prophetae.
ALEPH. Quomodo sedet sola civitas plena populo! Facta est quasi vidua domina gentium; princeps provinciarum facta est sub tributo.
BETH. Plorans ploravit in nocte, et lacrimæ ejus in maxillis ejus: non est qui consoletur eam, ex omnibus caris ejus; omnes amici ejus spreverunt eam, et facti sunt ei inimici.
Ierusalem, convertere ad Dominum Deum tuum.
trans. Book of Lamentations 1:1-2
Here begins the lamentation of Jeremiah the prophet.
A. How lonely sits the city that was full of people! How like a widow has she become, she that was great among the nations! She that was a princess among the cities has become a vassal.
B. She weeps bitterly in the night, tears on her cheeks; among all her lovers she has none to comfort her; all her friends have dealt treacherously with her, they have become her enemies.
Jerusalem, turn again to the Lord your God.
The Sixteen Choir
Conducted by Harry Christophers

 

Process-based Organic Consciousness, Sentience, and some Easter Thoughts





A PROCESS STATEMENT

The universe is a very organic thing. Which is another way of saying that all things in an organic universe are related to one another. Part of being organic is that when all things are related to one another it also means that all things processually proceed with one another in casual affectiveness. It is the kind of processual relationality which a unique, one-of-a-kind cosmology contains within itself which is determinative of the kinds of cosmological outcomes which may proceed from this ontological form of metaphysical economy held within a singularly unique multiverse. In processual philosophical terms this economy is described as holding within itself prehensive possibilities which are affected by other prehensive possibilities, each-and-all conjoining together towards possible processual actualities which when actualized then concresce towards other prehensive possibilities and outcomes. In sum, that which "is" is in the process of "being and becoming."

A PROCESS AXIOM

Succinctly, in a processual cosmology it is correct to say, when reflecting on a relational cosmology, that a state of "being" is always in a state of "becoming. "To Be" is "to Become." If not, then being ceases to exist. In a processually relational universe nothing can cease to exist as transformative becoming can never cease to occur. Not only is change constant, neither can it happen alone. Nothing is ever alone. Nothing can be reduced to its elemental stage. And if it were, is meaningless without an affectation for relationality. Reductionary mechanism without elucidation of the processes surrounding processual event is simply meaningless existence. In fact, one may argue that a nonrelational elemental is nonexistent unless it has at least one external relationship affected by itself, and itself affecting another relationship. This would be the summa cum laude of "beingness". There can be no "beingness" if there isn't any relational affectiveness causing processual "becomingness". This is why evolution thrives. Because all things are in a non-determinative, openly affecting relationship with each other creating a difference of possible outcomes. Whether as a form of cosmic evolution, or as a form of biologic evolution, "life" is always a description of relational processes affecting one another towards an indeterminate, open future.

A PROCESS THEOLOGY

In like manner, a process-based faith of any kind, of any religion - especially  that of Christianity along with its fellow cosmic parallels of Hinduism et al - is only connective to the natural cosmology around us should it acknowledge and lean into this kind of metaphysical / ontological cosmological structure. It's what enlivens aesthetics and gives energy towards moral ethics when observing how man and nature interactively commune together in good, or bad, mutually nurturing (or unnurturing) relationships with one another. Each seeking its own wellbeing which may, or may not, adversely affect the other, dependent upon the balance we each give to the other's ontological rhythms and reasons and motions.

More precisely, for Christianity, it is also why the Christian faith should be circumscribed around God's love and not cast into man's versions of his own being by ascribing to God man's own wrath and anger. If God is love, then God is love through and through. No hell. No punishment. No judgment. These outcomes all result through man not loving "one another" in affective, nurturing relationships of wellbeing. So too with nature when we divorce ourselves from nature's rhythms and affectuating beingness (I prefer using here affectuating over effectuating, even though it is a non-word).

Thus and thus, God is love. God is relational. God is processual. God has created from God's Self - from the divine Imago Dei - a creation after God's own Being and Beingness. A creation which is relationally present (hence process theology leans into divine immanence over divine transcendence, though the latter is not denied). That is processual in relational event; non-determinative by God and yet, paradoxically, fully informed by God; which is open in its future without divine constraints or boundaries and yet, fully sustained and moved by God throughout its entirety; one which is immanently bound up in God and God's own presence through and through creation's own metaphysical being and becomingness. Even as creation evolves so too does God evolve with creation's newness corresponding with its processual developmnt and results while energizing its processual evolution having never escaped from God's Imago Dei. This divinely propelled evolution is always filled with, and striving teleologically for, goodness and wellbeing, though this may mean something quite different for a wolf eyeing its prey, or a bacteria growing its own colony. God is neither controlling creation nor is God determining creations' outcomes. However, the blueprint of the Divine is the DNA within all of creation's expanses. God formed it from its formless void (creatio continua, not creation ex nihilo) and gave to it life and direction and sustenance. This is process theology. It is a theology of fellowship, communion, and commonality.

SEVERAL DERIVATIVE PROCESS OBSERVATIONS

Being curious about everything explains drive, ambition, even imagination. Without curiosity speculation would be stymied. Lately, process philosophy has been showing itself most applicable to today's contemporary sciences and metaphysical conjectures. As part of the next generation of process thinkers, a fourth generation of process academicians are exploring many, many more applicable streams of process thought throughout the sciences like today's brief discussion of holographic consciousness elucidated below. As the process sciences continue to develop ala Alfred North Whitehead's initial philosophical proposals in the early 1900s it seems that there aren't any socio-scientific-ecological areas out there which cannot be examined - or helped - by process thinking. Unless it is our taxes, since today is tax day when all tax payments are due!

One last thought... as today is also Good Friday where Jesus' death on the cross repaid-and-repaired all of creation's fallenness measured by it's many broken relationships with-and-within itself. And on Easter, two days hence from today, Jesus arose from the grave in resurrection power and redemption for all. Let us then note as consequence the beauty of Jesus' processual / relational salvific force come to heal and rectify all broken things measured in sin and evil, suffering and harm. Not only spiritually, but also personally, relationally, and perhaps even physically. By Jesus' re-engagement of God's love into this broken world, and by His redemption, Jesus provides salvific hope and renewal, transformative reformation and conforming presence, to all things unloving, ungood, and un-natural.

As God is love this means there is also no divine (or Christian) hell... but there is hell on earth in a wayward, self-filled creation. A hell which may be dis-spelled through Jesus' healing redemption. It begins with God's ever constant love which never abandons, never forsakes, nor ceases to be present in our lives through all our troubles, defeats, and ruins. God is always in immanent relationship with us, His creation. And in Jesus this love is healed that healing in this life may begin again within us to those broken around us.

WE LIVE IN A HOLOGRAPHIC UNIVERSE

One last observation... there is a kind of cosmic awareness, or consciousness, pervading throughout the universe. We might measure it by its forces and energies, its time and events, but as a cosmic organism process theology grants to it its own panpsychic awareness bourne out by its integrated relationality measured by affectuating processes. Without straying into New Ageism or Aural Astrology, we might better describe this subsidiary relational affect in terms  of a cosmic holographic awareness of itself. Into this category one might throw in the ideas of time, substance, and consciousness. None of these are concrete things but byproducts of events in motion. Not illusions but more like holographic afteraffects of processual events in dynamic relationships with one another.

Moreover, humanity is not unique in its awareness of itself. From animals to ants, from trees to bacteria, from quantum forces and quarks, within each rests an "awareness" bound within all things of its environment. Which, taken together, grants forms of panpsychic consciousness whether on a cosmic or planetary scale, or within biologic evolution itself. Humanity is neither alone nor unique in its most prized idea of itself... its consciousness. Man inherited this trait or quality of consciousness ftom the earth, from the stars, fyom God's own Self. 

A PROCESS WORLD MEANS PROCESSUAL HEALING

Lastly, there may be a kind of processual healing spiritually ascribed onto all relationally prehending occasions portending future determinative actualities which may, perhaps, proceed differently than they might have actually proceeded without affectuating interference. This is the power of prayer and of enlisting the Author of creation to heal and renew His wayward creation to loving action - whether man or beast, cosmic force or biologic energy. We are to live in harmony and in balance with one another. Jesus is the spirituality which brings all of God's Being back together with all the world's becoming which has broken fellowship and presence with God. It is the story of Easter and its meaning for all....

Peace, and Good Easter,

R.E. Slater
April 15, 2022





The Holographic Brain
May 21, 2021


The Mystery
Holonomic brain theory, also known as 'The Holographic Brain', is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. This is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry, and which assumes that any quantum effects will not be significant at this scale. The entire field of quantum consciousness is often criticized as pseudoscience. This specific theory of quantum consciousness was developed by neuroscientist Karl Pribram initially in collaboration with physicist David Bohm building on the initial theories of holograms originally formulated by Dennis Gabor. It describes human cognition by modeling the brain as a holographic storage network. Pribram suggests these processes involve electric oscillations in the brain's fine-fibered dendritic webs, which are different from the more commonly known action potentials involving axons and synapses. These oscillations are waves and create wave interference patterns in which memory is encoded naturally, and the wave function may be analyzed by a Fourier transform. Gabor, Pribram and others noted the similarities between these brain processes and the storage of information in a hologram, which can also be analyzed with a Fourier transform. In a hologram, any part of the hologram with sufficient size contains the whole of the stored information. In this theory, a piece of a long-term memory is similarly distributed over a dendritic arbor so that each part of the dendritic network contains all the information stored over the entire network. This model allows for important aspects of human consciousness, including the fast associative memory that allows for connections between different pieces of stored information and the non-locality of memory storage (a specific memory is not stored in a specific location, i.e. a certain cluster of neurons).



  

  

Processual Readings in Process Thought








HOLONOMIC BRAIN THEORY


Holonomic brain theory, also known as The Holographic Brain, is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. This is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry, and which assumes that any quantum effects will not be significant at this scale. The entire field of quantum consciousness is often criticized as pseudoscience.

This specific theory of quantum consciousness was developed by neuroscientist Karl Pribram initially in collaboration with physicist David Bohm building on the initial theories of holograms originally formulated by Dennis Gabor. It describes human cognition by modeling the brain as a holographic storage network.[1][2] Pribram suggests these processes involve electric oscillations in the brain's fine-fibered dendritic webs, which are different from the more commonly known action potentials involving axons and synapses.[3][4][5] These oscillations are waves and create wave interference patterns in which memory is encoded naturally, and the wave function may be analyzed by a Fourier transform.[3][4][5][6][7] Gabor, Pribram and others noted the similarities between these brain processes and the storage of information in a hologram, which can also be analyzed with a Fourier transform.[1][8] In a hologram, any part of the hologram with sufficient size contains the whole of the stored information. In this theory, a piece of a long-term memory is similarly distributed over a dendritic arbor so that each part of the dendritic network contains all the information stored over the entire network.[1][8][9] This model allows for important aspects of human consciousness, including the fast associative memory that allows for connections between different pieces of stored information and the non-locality of memory storage (a specific memory is not stored in a specific location, i.e. a certain cluster of neurons).[1][10][11]

Origins and development

In 1946 Dennis Gabor invented the hologram mathematically, describing a system where an image can be reconstructed through information that is stored throughout the hologram.[3] He demonstrated that the information pattern of a three-dimensional object can be encoded in a beam of light, which is more-or-less two-dimensional. Gabor also developed a mathematical model for demonstrating a holographic associative memory.[12] One of Gabor's colleagues, Pieter Jacobus Van Heerden, also developed a related holographic mathematical memory model in 1963.[13][14][15] This model contained the key aspect of non-locality, which became important years later when, in 1967, experiments by both Braitenberg and Kirschfield showed that exact localization of memory in the brain was false.[9]

Karl Pribram had worked with psychologist Karl Lashley on Lashley's engram experiments, which used lesions to determine the exact location of specific memories in primate brains.[1] Lashley made small lesions in the brains and found that these had little effect on memory. On the other hand, Pribram removed large areas of cortex, leading to multiple serious deficits in memory and cognitive function. Memories were not stored in a single neuron or exact location, but were spread over the entirety of a neural network. Lashley suggested that brain interference patterns could play a role in perception, but was unsure how such patterns might be generated in the brain or how they would lead to brain function.[16]

Several years later an article by neurophysiologist John Eccles described how a wave could be generated at the branching ends of pre-synaptic axons. Multiple of these waves could create interference patterns. Soon after, Emmett Leith was successful in storing visual images through the interference patterns of laser beams, inspired by Gabor's previous use of Fourier transformations to store information within a hologram.[17] After studying the work of Eccles and that of Leith,[16] Pribram put forward the hypothesis that memory might take the form of interference patterns that resemble laser-produced holograms.[18] Physicist David Bohm presented his ideas of holomovement and implicate and explicate order.[citation needed] Pribram became aware of Bohm's work in 1975[19] and realized that, since a hologram could store information within patterns of interference and then recreate that information when activated, it could serve as a strong metaphor for brain function.[16] Pribram was further encouraged in this line of speculation by the fact that neurophysiologists Russell and Karen DeValois[20] together established "the spatial frequency encoding displayed by cells of the visual cortex was best described as a Fourier transform of the input pattern."[21]

Theory overview

The hologram and holonomy

Diagram of one possible hologram setup.

A main characteristic of a hologram is that every part of the stored information is distributed over the entire hologram.[2] Both processes of storage and retrieval are carried out in a way described by Fourier transformation equations.[22] As long as a part of the hologram is large enough to contain the interference pattern, that part can recreate the entirety of the stored image, but the image may have unwanted changes, called noise.[8]

An analogy to this is the broadcasting region of a radio antenna. In each smaller individual location within the entire area it is possible to access every channel, similar to how the entirety of the information of a hologram is contained within a part.[3] Another analogy of a hologram is the way sunlight illuminates objects in the visual field of an observer. It doesn't matter how narrow the beam of sunlight is. The beam always contains all the information of the object, and when conjugated by a lens of a camera or the eyeball, produces the same full three-dimensional image. The Fourier transform formula converts spatial forms to spatial wave frequencies and vice versa, as all objects are in essence vibratory structures. Different types of lenses, acting similarly to optic lenses, can alter the frequency nature of information that is transferred.

This non-locality of information storage within the hologram is crucial, because even if most parts are damaged, the entirety will be contained within even a single remaining part of sufficient size. Pribram and others noted the similarities between an optical hologram and memory storage in the human brain. According to the holonomic brain theory, memories are stored within certain general regions, but stored non-locally within those regions.[23] This allows the brain to maintain function and memory even when it is damaged.[2][22][24] It is only when there exist no parts big enough to contain the whole that the memory is lost.[3] This can also explain why some children retain normal intelligence when large portions of their brain—in some cases, half—are removed. It can also explain why memory is not lost when the brain is sliced in different cross-sections.[5]

A single hologram can store 3D information in a 2D way. Such properties may explain some of the brain's abilities, including the ability to recognize objects at different angles and sizes than in the original stored memory.

Pribram proposed that neural holograms were formed by the diffraction patterns of oscillating electric waves within the cortex.[24] Representation occurs as a dynamical transformation in a distributed network of dendritic microprocesses.[25] It is important to note the difference between the idea of a holonomic brain and a holographic one. Pribram does not suggest that the brain functions as a single hologram. Rather, the waves within smaller neural networks create localized holograms within the larger workings of the brain.[5] This patch holography is called holonomy or windowed Fourier transformations.

A holographic model can also account for other features of memory that more traditional models cannot. The Hopfield memory model has an early memory saturation point before which memory retrieval drastically slows and becomes unreliable.[22] On the other hand, holographic memory models have much larger theoretical storage capacities. Holographic models can also demonstrate associative memory, store complex connections between different concepts, and resemble forgetting through "lossy storage".[12]

The synaptodendritic web

A Few of the Various Types of Synapses

In classic brain theory the summation of electrical inputs to the dendrites and soma (cell body) of a neuron either inhibit the neuron or excite it and set off an action potential down the axon to where it synapses with the next neuron. However, this fails to account for different varieties of synapses beyond the traditional axodendritic (axon to dendrite). There is evidence for the existence of other kinds of synapses, including serial synapses and those between dendrites and soma and between different dendrites.[4] Many synaptic locations are functionally bipolar, meaning they can both send and receive impulses from each neuron, distributing input and output over the entire group of dendrites.[4]

Processes in this dendritic arbor, the network of teledendrons and dendrites, occur due to the oscillations of polarizations in the membrane of the fine-fibered dendrites, not due to the propagated nerve impulses associated with action potentials.[3] Pribram posits that the length of the delay of an input signal in the dendritic arbor before it travels down the axon is related to mental awareness.[4][26] The shorter the delay the more unconscious the action, while a longer delay indicates a longer period of awareness. A study by David Alkon showed that after unconscious Pavlovian conditioning there was a proportionally greater reduction in the volume of the dendritic arbor, akin to synaptic elimination when experience increases the automaticity of an action.[4] Pribram and others theorize that, while unconscious behavior is mediated by impulses through nerve circuits, conscious behavior arises from microprocesses in the dendritic arbor.[3]

At the same time, the dendritic network is extremely complex, able to receive 100,000 to 200,000 inputs in a single tree, due to the large amount of branching and the many dendritic spines protruding from the branches.[4] Furthermore, synaptic hyperpolarization and depolarization remains somewhat isolated due to the resistance from the narrow dendritic spine stalk, allowing a polarization to spread without much interruption to the other spines. This spread is further aided intracellularly by the microtubules and extracellularly by glial cells. These polarizations act as waves in the synaptodendritic network, and the existence of multiple waves at once gives rise to interference patterns.[4]

Deep and surface structure of memory

Pribram suggests that there are two layers of cortical processing: a surface structure of separated and localized neural circuits and a deep structure of the dendritic arborization that binds the surface structure together. The deep structure contains distributed memory, while the surface structure acts as the retrieval mechanism.[3] Binding occurs through the temporal synchronization of the oscillating polarizations in the synaptodendritic web. It had been thought that binding only occurred when there was no phase lead or lag present, but a study by Saul and Humphrey found that cells in the lateral geniculate nucleus do in fact produce these.[4] Here phase lead and lag act to enhance sensory discrimination, acting as a frame to capture important features.[4] These filters are also similar to the lenses necessary for holographic functioning.

Pribram notes that holographic memories show large capacities, parallel processing and content addressability for rapid recognition, associative storage for perceptual completion and for associative recall.[27] In systems endowed with memory storage, these interactions therefore lead to progressively more self-determination.[25]

Recent studies

While Pribram originally developed the holonomic brain theory as an analogy for certain brain processes, several papers (including some more recent ones by Pribram himself) have proposed that the similarity between hologram and certain brain functions is more than just metaphorical, but actually structural.[10][26] Others still maintain that the relationship is only analogical.[28] Several studies have shown that the same series of operations used in holographic memory models are performed in certain processes concerning temporal memory and optomotor responses. This indicates at least the possibility of the existence of neurological structures with certain holonomic properties.[9] Other studies have demonstrated the possibility that biophoton emission (biological electrical signals that are converted to weak electromagnetic waves in the visible range) may be a necessary condition for the electric activity in the brain to store holographic images.[10] These may play a role in cell communication and certain brain processes including sleep, but further studies are needed to strengthen current ones.[26] Other studies have shown the correlation between more advanced cognitive function and homeothermy. Taking holographic brain models into account, this temperature regulation would reduce distortion of the signal waves, an important condition for holographic systems.[10] Computation approach in terms of holographic codes and processing.[29]

Criticism and alternative models

Pribram's holonomic model of brain function did not receive widespread attention at the time, but other quantum models have been developed since, including brain dynamics by Jibu & Yasue and Vitiello's dissipative quantum brain dynamics. Though not directly related to the holonomic model, they continue to move beyond approaches based solely in classic brain theory.[2][10]

Correlograph

In 1969 scientists D. Wilshaw, O. P. Buneman and H. Longuet-Higgins proposed an alternative, non-holographic model that fulfilled many of the same requirements as Gabor's original holographic model. The Gabor model did not explain how the brain could use Fourier analysis on incoming signals or how it would deal with the low signal-noise ratio in reconstructed memories. Longuet-Higgin's correlograph model built on the idea that any system could perform the same functions as a Fourier holograph if it could correlate pairs of patterns. It uses minute pinholes that do not produce diffraction patterns to create a similar reconstruction as that in Fourier holography.[2] Like a hologram, a discrete correlograph can recognize displaced patterns and store information in a parallel and non-local way so it usually will not be destroyed by localized damage.[30] They then expanded the model beyond the correlograph to an associative net where the points become parallel lines arranged in a grid. Horizontal lines represent axons of input neurons while vertical lines represent output neurons. Each intersection represents a modifiable synapse. Though this cannot recognize displaced patterns, it has a greater potential storage capacity. This was not necessarily meant to show how the brain is organized, but instead to show the possibility of improving on Gabor's original model.[30] P. Van Heerden countered this model by demonstrating mathematically that the signal-noise ratio of a hologram could reach 50% of ideal. He also used a model with a 2D neural hologram network for fast searching imposed upon a 3D network for large storage capacity. A key quality of this model was its flexibility to change the orientation and fix distortions of stored information, which is important for our ability to recognize an object as the same entity from different angles and positions, something the correlograph and association network models lack.[15]

See also

References

  1. Jump up to:a b c d e Forsdyke D. R. (2009). "Samuel Butler and human long term memory: Is the cupboard bare?". Journal of Theoretical Biology258 (1): 156–164. doi:10.1016/j.jtbi.2009.01.028PMID 19490862.
  2. Jump up to:a b c d e Andrew A. M. (1997). "The decade of the brain - further thoughts". Kybernetes26 (3): 255–264. doi:10.1108/03684929710163155.
  3. Jump up to:a b c d e f g h Pribram K. H., Meade S. D. (1999). "Conscious awareness: Processing in the synaptodendritic web". New Ideas in Psychology17 (3): 205–214. doi:10.1016/S0732-118X(99)00024-0.
  4. Jump up to:a b c d e f g h i j Pribram K. H. (1999). "Quantum holography: Is it relevant to brain function?". Information Sciences115 (1–4): 97–102. doi:10.1016/S0020-0255(98)10082-8.
  5. Jump up to:a b c Vandervert L. R. (1995). "Chaos theory and the evolution of consciousness and mind: A thermodynamic-holographic resolution to the mind-body problem". New Ideas in Psychology13 (2): 107–127. doi:10.1016/0732-118X(94)00047-7.
  6. ^ Berger D.H., Pribram K.H. (1992). "The Relationship between the Gabor elementary function and a stochastic model of the inter-spike interval distribution in the responses of the visual cortex neurons". Biological Cybernetics67 (2): 191–194. doi:10.1007/bf00201026PMID 1320946S2CID 11123748.
  7. ^ Pribram K.H. (2004). "Consciousness Reassessed". Mind and Matter2: 7–35.
  8. Jump up to:a b c Gabor D (1972). "Holography, 1948–1971". Science177 (4046): 299–313. doi:10.1126/science.177.4046.299PMID 4556285.
  9. Jump up to:a b c Borsellino A., Poggio T. (1972). "Holographic aspects of temporal memory and optomotor responses". Kybernetik10 (1): 58–60. doi:10.1007/bf00288785PMID 4338085S2CID 10084612.
  10. Jump up to:a b c d e Bókkon István (2005). "Dreams and neuroholography: An interdisciplinary interpretation of development of homeotherm state in evolution". Sleep and Hypnosis7 (2): 47–62.
  11. ^ Gabor D (1968). "Holographic Model of Temporal Recall". Nature217 (5128): 584. doi:10.1038/217584a0PMID 5641120S2CID 4147927.
  12. Jump up to:a b Kelly M. A.; Blostein D.; Mewhort D. J. K. (2013). "Encoding structure in holographic reduced representations"Canadian Journal of Experimental Psychology67 (2): 79–93. doi:10.1037/a0030301PMID 23205508.
  13. ^ Van Heerden P. J. (1963). "A New Optical Method of Storing and Retrieving Information". Applied Optics2 (4): 387–392. doi:10.1364/AO.2.000387.
  14. ^ Van Heerden P. J. (1963). "Theory of Optical Information Storage in Solids". Applied Optics2 (4): 393–400. doi:10.1364/AO.2.000393.
  15. Jump up to:a b Van Heerden P. J. (1970). "Models for the brain". Nature225 (5228): 177–178. doi:10.1038/225177a0PMID 5409963S2CID 4224802.
  16. Jump up to:a b c Pribram H.H. (2011). "Recollections". NeuroQuantology9 (3): 370–374. doi:10.14704/nq.2011.9.3.447.
  17. ^ Emmett N. Leith and Juris Upatnieks (1965). Photography by Laser. Scientific American Volume 212, Issue 6, June 1, 1965
  18. ^ K. Pribram (1969). The Neurophysiology of Remembering. American Volume 220, Issue 1, January 1, 1969
  19. ^ The implicate brain by Karl H. Pribram, karlhpribram.com
  20. ^ DeValois and DeValois, 1980
  21. ^ "Pribram, 1987"
  22. Jump up to:a b c Srivastava V., Edwards S. F. (2004). "A mathematical model of capacious and efficient memory that survives trauma". Physica A: Statistical Mechanics and Its Applications333 (1–4): 465–477. doi:10.1016/j.physa.2003.10.008.
  23. ^ Longuet-Higgins H. C. (1968). "Holographic model of temporal recall [50]"Nature217 (5123): 104. doi:10.1038/217104a0PMID 5635629S2CID 4281144.
  24. Jump up to:a b Baev K.V. (2012). "Solution of the Problem of Central Pattern Generators and a New Concept of Brain Functions". Neurophysiology4 (5): 414–432. doi:10.1007/s11062-012-9313-xS2CID 17264908.
  25. Jump up to:a b Pribram, Karl (1991). Brain and Perception: Holonomy and Structure in Figural Processing. Laurence Erlbaum Associates, Inc. ISBN 0-89859-995-4.
  26. Jump up to:a b c Persinger M.A., Lavallee C. (2012). "The Σn=n Concept and the Quantitative Support for the Cerebral-Holographic and Electromagnetic Configuration of Consciousness". Journal of Consciousness Studies19: 128–253.
  27. ^ Unterseher, Fred (1996). Holography Handbook: Making Holograms The Easy Way (Second ed.). Ross Books. pp. 354–359. ISBN 0-89496-016-4.
  28. ^ Velmans M (2003). "Is the world in the brain, or the brain in the world?". Behavioral and Brain Sciences26 (4): 427–429. doi:10.1017/s0140525x03420098.
  29. ^ Shlomi Dolev; Ariel, Hanemann (2014). "Holographic "Brain" Memory and Computation"Latin America Optics and Photonics: 16–21. doi:10.1364/LAOP.2014.LM2A.3.
  30. Jump up to:a b Willshaw D. J.; Buneman O. P.; Longuet-Higgins H. C. (1969). "Non-holographic associative memory". Nature222 (5197): 960–962. doi:10.1038/222960a0PMID 5789326S2CID 27768997.

Bibliography

  1. Steven Platek et al., “Boldly going where no brain has gone: Futures of evolutionary cognitive neuroscience,” Futures, October 2011, Volume 43, Issue 8, 771–776.
  2. Diedrick Aerts et al., Quantum Interaction Approach in Cognition, Artificial Intelligence, and Robots, Brussels University Press, April 2011.
  3. Ervin Laszlo, “In Defense of Intuition: Exploring the Physical Foundations of Spontaneous Apprehension,” Journal of Scientific Exploration, 2009, Volume 23[unreliable source?]
  4. Karl Pribram, Brain and Perception: Holonomy and Structure in Figural Processing (Lawrence Erlbaum Associates, 1991), 125–150.
  5. Karl Pribram, The Form Within (Prospecta Press, 2013).
  6. Michael Talbot, The Holographic Universe (HarperCollins, 2011).

External links