Wednesday, June 30, 2021

Classical Physics - The Electromagnetic Spectrum








We live in a sea of waves. With visual aids, students may explore the unique relationship between the unseen electric and magnetic waves surrounding us. See the difference between wavelength and frequency scales in addition to understanding radio and microwave usage, x-ray and gamma ray absorption and much more.

CHARTS AND GRAPHS


















* * * * * * * *


The Electromagnetic Spectrum


The electromagnetic (EM) spectrum is the range of all types of EM radiation. Radiation is energy that travels and spreads out as it goes – the visible light that comes from a lamp in your house and the radio waves that come from a radio station are two types of electromagnetic radiation. The other types of EM radiation that make up the electromagnetic spectrum are microwavesinfrared lightultraviolet lightX-rays and gamma-rays.

You know more about the electromagnetic spectrum than you may think. The image below shows where you might encounter each portion of the EM spectrum in your day-to-day life.

The electromagnetic spectrum from lowest energy/longest wavelength (at the top) to highest energy/shortest wavelength (at the bottom). (Credit: NASA's Imagine the Universe)

Radio: Your radio captures radio waves emitted by radio stations, bringing your favorite tunes. Radio waves are also emitted by stars and gases in space.

Microwave: Microwave radiation will cook your popcorn in just a few minutes, but is also used by astronomers to learn about the structure of nearby galaxies.

Infrared: Night vision goggles pick up the infrared light emitted by our skin and objects with heat. In space, infrared light helps us map the dust between stars.

Visible: Our eyes detect visible light. Fireflies, light bulbs, and stars all emit visible light.

Ultraviolet: Ultraviolet radiation is emitted by the Sun and are the reason skin tans and burns. "Hot" objects in space emit UV radiation as well.

X-ray: A dentist uses X-rays to image your teeth, and airport security uses them to see through your bag. Hot gases in the Universe also emit X-rays.

Gamma ray: Doctors use gamma-ray imaging to see inside your body. The biggest gamma-ray generator of all is the Universe.


Tour of the EMS 01 - Introduction



Tour of the EMS 02 - Radio Waves



Tour of the EMS 03 - Microwaves



Tour of the EMS 04 - Infrared Waves



Tour of the EMS 05 - Visible Light Waves



Tour of the EMS 06 - Ultraviolet Waves



Tour of the EMS 07 - X-Rays



Tour of the EMS 08 - Gamma Waves



Is a radio wave the same as a gamma ray?

Are radio waves completely different physical objects than gamma-rays? They are produced in different processes and are detected in different ways, but they are not fundamentally different. Radio waves, gamma-rays, visible light, and all the other parts of the electromagnetic spectrum are electromagnetic radiation.

Electromagnetic radiation can be described in terms of a stream of mass-less particles, called photons, each traveling in a wave-like pattern at the speed of light. Each photon contains a certain amount of energy. The different types of radiation are defined by the the amount of energy found in the photons. Radio waves have photons with low energies, microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and, the most energetic of all, gamma-rays.

Measuring electromagnetic radiation

Electromagnetic radiation can be expressed in terms of energy, wavelength, or frequency. Frequency is measured in cycles per second, or Hertz. Wavelength is measured in meters. Energy is measured in electron volts. Each of these three quantities for describing EM radiation are related to each other in a precise mathematical way. But why have three ways of describing things, each with a different set of physical units?
Comparison of wavelength, frequency and energy for the electro-
magnetic spectrum. (Credit: NASA's Imagine the Universe)


The short answer is that scientists don't like to use numbers any bigger or smaller than they have to. It is much easier to say or write "two kilometers" than "two thousand meters." Generally, scientists use whatever units are easiest for the type of EM radiation they work with.

Astronomers who study radio waves tend to use wavelengths or frequencies. Most of the radio part of the EM spectrum falls in the range from about 1 cm to 1 km, which is 30 gigahertz (GHz) to 300 kilohertz (kHz) in frequencies. The radio is a very broad part of the EM spectrum.

Infrared and optical astronomers generally use wavelength. Infrared astronomers use microns (millionths of a meter) for wavelengths, so their part of the EM spectrum falls in the range of 1 to 100 microns. Optical astronomers use both angstroms (0.00000001 cm, or 10-8 cm) and nanometers (0.0000001 cm, or 10-7 cm). Using nanometers, violet, blue, green, yellow, orange, and red light have wavelengths between 400 and 700 nanometers. (This range is just a tiny part of the entire EM spectrum, so the light our eyes can see is just a little fraction of all the EM radiation around us.)

The wavelengths of ultraviolet, X-ray, and gamma-ray regions of the EM spectrum are very small. Instead of using wavelengths, astronomers that study these portions of the EM spectrum usually refer to these photons by their energies, measured in electron volts (eV). Ultraviolet radiation falls in the range from a few electron volts to about 100 eV. X-ray photons have energies in the range 100 eV to 100,000 eV (or 100 keV). Gamma-rays then are all the photons with energies greater than 100 keV.

Why do we put telescopes in orbit?

The Earth's atmosphere stops most types of electromagnetic radiation from space from reaching Earth's surface. This illustration shows how far into the atmosphere different parts of the EM spectrum can go before being absorbed. Only portions of radio and visible light reach the surface. (Credit: STScI/JHU/NASA)

Most electromagnetic radiation from space is unable to reach the surface of the Earth. Radio frequencies, visible light and some ultraviolet light makes it to sea level. Astronomers can observe some infrared wavelengths by putting telescopes on mountain tops. Balloon experiments can reach 35 km above the surface and can operate for months. Rocket flights can take instruments all the way above the Earth's atmosphere, but only for a few minutes before they fall back to Earth.

For long-term observations, however, it is best to have your detector on an orbiting satellite and get above it all!

* * * * * * * *



Introduction

The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies.

The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from below one hertz to above 1025 hertz, corresponding to wavelengths from thousands of kilometers down to a fraction of the size of an atomic nucleus. This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. The limit for long wavelengths is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length.[4] Gamma rays, X-rays, and high ultraviolet are classified as ionizing radiation as their photons have enough energy to ionize atoms, causing chemical reactions.

In most of the frequency bands above, a technique called spectroscopy can be used to physically separate waves of different frequencies, producing a spectrum showing the constituent frequencies. Spectroscopy is used to study the interactions of electromagnetic waves with matter.[5] Other technological uses are described under electromagnetic radiation.




* * * * * * * *



Introduction

The entire distribution of electromagnetic radiation according to frequency or wavelength. Although all electromagnetic waves travel at the speed of light in a vacuum, they do so at a wide range of frequencies, wavelengths, and photon energies. The electromagnetic spectrum comprises the span of all electromagnetic radiation and consists of many subranges, commonly referred to as portions, such as visible light or ultraviolet radiation. The various portions bear different names based on differences in behaviour in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no precise accepted boundaries between any of these contiguous portions, so the ranges tend to overlap.


The electromagnetic spectrum. The narrow range of visible light is
shown enlarged at the right. | Image: Encyclopædia Britannica, Inc.


The entire electromagnetic spectrum, from the lowest to the highest frequency (longest to shortest wavelength), includes all radio waves (e.g., commercial radio and television, microwaves, radar), infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. Nearly all frequencies and wavelengths of electromagnetic radiation can be used for spectroscopy.



Type of Electromagnetic Radiation: Radio waves, infrared rays, visible light, ultraviolet rays, X-rays, and gamma rays are all types of electromagnetic radiation. Radio waves have the longest wavelength, and gamma rays have the shortest wavelength. | Image: Encyclopædia Britannica, Inc.

 

Learn More in these related Britannica articles:


ADDITIONAL CHARTS





Thursday, June 24, 2021

Bill Gates - Good Reads 2021

 

 GOOD READS

5 ideas for summer reading
These books gave me something to think about. I hope they do the same for you.
| 

When I finish one book and am deciding what to read next, there usually isn’t always rhyme or reason to what I pick. Sometimes I’ll read one great book and get inspired to read several more about the same subject. Other times I am eager to follow a recommendation from someone I respect.

Lately, though, I find myself reaching for books about the complicated relationship between humanity and nature. Maybe it’s because everyone’s lives have been upended by a virus. Or maybe it’s because I’ve spent so much time this year talking about what we need to do to avoid a climate disaster.

5 Ideas for Summer Reading

Whatever the reason, most of the books on my summer reading list this year touch on what happens when people come into conflict with the world around them. I’ve included a look at how researchers are trying to undo damage done to the planet by humans, a deep dive about how your body keeps you safe from microscopic invaders, a president’s memoir that addresses the fallout from an oil spill, and a novel about a group of ordinary people fighting to save the trees. (There’s also a fascinating look at the downfall of one of America’s greatest companies.)

I hope at least one of these books sparks your interest this summer.

Lights Out: Pride, Delusion, and the Fall of General Electricby Thomas Gryta and Ted MannHow could a company as big and successful as GE fail? I’ve been thinking about that question for several years, and Lights Out finally gave me many of the answers I was seeking. The authors give you an unflinching look at the mistakes and missteps made by GE’s leadership. If you’re in any kind of leadership role—whether at a company, a non-profit, or somewhere else—there’s a lot you can learn here.

Under a White Sky: The Nature of the Futureby Elizabeth Kolbert. Kolbert’s latest is the most straightforward examination of “humanity versus nature” on this list. She describes it as “a book about people trying to solve problems caused by people trying to solve problems.” She writes about a number of the ways that people are intervening with nature, including gene drive and geoengineering—two topics that I’m particularly interested in. Like all of her books, it’s an enjoyable read.

A Promised Landby Barack Obama. I am almost always interested in books about American presidents, and I especially loved A Promised Land. The memoir covers his early career up through the mission that killed Osama bin Laden in 2011. President Obama is unusually honest about his experience in the White House, including how isolating it is to be the person who ultimately calls the shots. It’s a fascinating look at what it’s like to steer a country through challenging times.

The Overstoryby Richard PowersThis is one of the most unusual novels I’ve read in years. The Overstory follows the lives of nine people and examines their connection with trees. Some of the characters come together over the course of the book, while others stay on their own. Even though the book takes a pretty extreme view towards the need to protect forests, I was moved by each character’s passion for their cause and finished the book eager to learn more about trees.

An Elegant Defense: The Extraordinary New Science of the Immune System: A Tale in Four Livesby Matt RichtelRichtel wrote his book before the pandemic, but this exploration of the human immune system is nevertheless a valuable read that will help you understand what it takes to stop COVID-19. He keeps the subject accessible by focusing on four patients, each of whom is forced to manage their immune system in one way or another. Their stories make for a super interesting look at the science of immunity.

Charles Taylor - A Secular Age, Session 1B

 

Amazon Link


Charles Taylor - A Secular Age, Session 1B





SESSION 1B: (6/15)

Why the Handmaid’s Tale is [not] a good ministry model or,
What happened to all the devils and demons?
Ministering to people who file belief away as private.

MEMBER READINGS: A Secular AgeIntroduction and Chapter 8

VIDEO LECTURESMaster Narratives of Modernity & Disenchantment and Secularity



Class Session Video / Audio
Special Guest Lecture: Secularization & Social Change
w/ Dr. Gerardo Marti (AUDIO)




SESSION ONE: AUDIO & PODCAST

June 18, 2021 By Tripp Fuller

We just launched a new open online class – Religion and the Spiritual Crisis. This pop-up learning community is a 6-week exploration of our Secular Age & the changing shape of faith and ministry. I am joined by my friend and practical theologian Dr. Andrew Root, as we read some powerful texts with a bunch of online friends.

The class itself is just a few days old and since session one I have had a number of class members ask to share the kickoff with friends who might want to join. After sending enough individual emails, I figured I would post it here so everyone can share it with friends and colleagues. If you are one of those friends, then “hello! check out the first session below and the class info page where you can learn more and sign-up. It’s a donation-based class so don’t let money get in the way of participating.”

How can faith be formed in a Secular Age?

In a world longing for enchantment but too cynical to accept it, pastors can understandably feel irrelevant and confused. The speed and rhythm of life are unsettling and decentering. In this class, we hope to provide a helpful overview of how our world became so disenchanted and what it might look like to attend to God in a world that has forgotten how to do so. Through a conversation with Charles Taylor & Hartmut Rosa, we intend to wrestle with the currents of culture and the task of embodying and inviting people into the life of faith.

Tripp Fuller


* * * * * * * * *






Jason W. Blakely Series: